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Abstract. In this paper some new refinements are given for Jensen’s type inequali-
ties involving the determinants of positive definite matrices. The so-called Bellman-
Bergstrom-Fan functionals are considered. These functionals are not only concave, but
superlinear which is a stronger condition. The results take advantage of this property.
In seek of applications, results are furnished with examples.

1 Introduction

We start with the following notation introduced in [6] (see also [7]).
Mm denotes the set of positive definite matrices of order m. It is evident that Mm

is closed under addition and multiplication by a positive number, i.e. if M1,M2 ∈Mm,
a > 0, then M1 +M2, aM1 ∈Mm (Mm is a convex cone).

If M ∈Mm, let
|M | := the determinant of M ,
|M |k = Πk

j=1λj, k = 1, ...,m, where λ1, ..., λm are the eigenvalues of M arranged in
non-decreasing order: λ1 ≤ ... ≤ λm (here |M |m = |M |),

M(j) := the submatrix of M obtained by deleting the jth row and column of M ,
M [k] := the principal submatrix ofM formed by taking the first k rows and columns

of M ; then M [m] = M , M [m− 1] = M(m) and M [0] is the identity matrix.
BBF means the class of Bellman-Bergstrom-Fan functionals σi, δj and νk defined

on Mm by
σi(M) = |M |

1
i
i , i = 1, ...,m,

δj(M) =
|M |
|M(j)|

, j = 1, ...,m,

and

νk(M) =

(
|M |
|M [k]|

) 1
(m−k)

, k = 1, ...,m,

respectively.
The BBF functionals are superlinear (see [6]), i.e. f ∈ BBF is both superadditive

f(M1 +M2) ≥ f(M1) + f(M2), M1,M2 ∈Mm



Refinements of determinantal inequalities of Jensen’s type 31

and positive homogeneous

f(pM) = pf(M), M1,M2 ∈Mm, p > 0.

More generally, for f ∈ BBF , Mi ∈ Mm, pi > 0 (i = 1, ..., n), and Pk =
∑k

i=1 pi
(k = 1, ..., n), we have (see also [6]):

f

(
n∑
i=1

piMi

)
≥

n∑
i=1

pif(Mi) ≥ Pn

n∏
i=1

f(Mi)
pi
Pn , (1.1)

which is an interpolating inequality for

f

(
1

Pn

n∑
i=1

piMi

)
≥

n∏
i=1

f(Mi)
pi
Pn . (1.2)

Remark 1. (a) Since a functional f ∈ BBF is superlinear, it is also concave. Inequal-
ity (1.2) comes from the second inequality in (1.1), which is just an arithmetic-geometric
mean inequality, by using only the concavity of f .

For Pn = 1, interpolations corresponding to the second inequality in (1.1) can be
found in [3] and [4]. In [2] parameter dependent interpolations are given.

(b) A concave functional on Mm is not superlinear in general, hence the interpola-
tions of the first inequality in (1.1) are most interesting in the case Pn 6= 1.

Unweighted versions of (1.1) and (1.2) are given by

f

(
1

n

n∑
i=1

Mi

)
≥ 1

n

n∑
i=1

f(Mi) ≥
n∏
i=1

f(Mi)
1/n, (1.3)

and

f

(
1

n

n∑
i=1

Mi

)
≥

n∏
i=1

f(Mi)
1/n, (1.4)

respectively.
The following interpolations of the first inequality in (1.3) are given in [6]:

f

(
1

n

n∑
i=1

Mi

)
= fn,n ≥ ... ≥ fk+1,n ≥ fk,n ≥ ... ≥ f1,n =

1

n

n∑
i=1

f(Mi), (1.5)

where
fk,n =

1(
n
k

) ∑
1≤i1<...<ik≤n

f

(
1

k
(Mi1 + ...+Mik)

)
.

[6] contains interpolations for the second inequality in (1.3) too:

1

n

n∑
i=1

f(Mi) = gn,n ≥ ... ≥ gk+1,n ≥ gk,n ≥ ... ≥ g1,n =
n∏
i=1

f(Mi)
1/n, (1.6)
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where

gk,n =
∏

1≤i1<...<ik≤n

(
1

k
(f(Mi1) + ...+ f(Mik))

) 1 n
k



and

1

n

n∑
i=1

f(Mi) = h1,n ≥ ... ≥ hk,n ≥ hk+1,n ≥ ... ≥ hn,n =
n∏
i=1

f(Mi)
1/n, (1.7)

where
hk,n =

1(
n
k

) ∑
1≤i1<...<ik≤n

(f(Mi1)...f(Mik))
1
k .

There are similar interpolations for (1.4) in [6]:

f

(
1

n

n∑
i=1

Mi

)
= rn,n ≥ ... ≥ rk+1,n ≥ rk,n ≥ ... ≥ r1,n =

n∏
i=1

f(Mi)
1/n, (1.8)

where

rk,n =
∏

1≤i1<...<ik≤n

f

(
1

k
(Mi1 + ...+Mik)

) 1 n
k



The above interpolations from [6] are based on the concavity of f . In this paper
we give interpolations of the first inequality in (1.1) (see Remark 1 (b)), which ensure
generalizations of (1.5). By using the results in the papers [3], [4] and [2], we can also
generalize the second inequality in (1.3) and the inequality (1.4), and thus inequalities
(1.6-1.8), but these interpolations are just concrete examples of the inequalities in the
papers [3], [4] and [2] (see Remark 1 (a)).

We start with notation introduced in [5].
Let X be a set. The power set of X is denoted by P (X). |X| means the number of

elements in X.
The usual symbol N is used for the set of natural numbers (including 0).
Let u ≥ 1 and v ≥ 2 be fixed integers. Define the functions

Sv,w : {1, . . . , u}v → {1, . . . , u}v−1 , 1 ≤ w ≤ v,

Sv : {1, . . . , u}v → P
(
{1, . . . , u}v−1) ,

and
Tv : P ({1, . . . , u}v) → P

(
{1, . . . , u}v−1)

by
Sv,w (i1, . . . , iv) := (i1, i2, . . . , iw−1, iw+1, . . . , iv) , 1 ≤ w ≤ v,

Sv (i1, . . . , iv) :=
v⋃

w=1

{Sv,w (i1, . . . , iv)} ,
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and

Tv(I) :=


∅, if I = ∅⋃

(i1,...,iv)∈I

Sv (i1, . . . , iv) , if I 6= ∅ .

Next, let the function

αv,i : {1, . . . , u}v → N, 1 ≤ i ≤ u,

be given by: αv,i (i1, . . . , iv) means the number of occurrences of i in the sequence
(i1, . . . , iv).

For each I ∈ P ({1, . . . , u}v) let

αI,i :=
∑

(i1,...,iv)∈I

αv,i (i1, . . . , iv) , 1 ≤ i ≤ u.

It is easy to see that the dependence of the functions Sv,w, Sv, Tv and αv,i on u does
not play an important role, so we can use simplified notations.

The following hypotheses will give the basic context of our results.
(H1) Let n ≥ 1 and k ≥ 2 be fixed integers, and let Ik be a subset of {1, . . . , n}k

such that
αIk,i ≥ 1, 1 ≤ i ≤ n. (1.9)

(H2) Let M1, ...,Mn ∈Mm.

(H3) Let p1, . . . , pn be positive real numbers. Let Pn :=
n∑
i=1

pi.

(H4) Let the function f : Mm → R be a Bellman-Bergström-Fan (BBF ) functional.

We need some further preparations.
Starting from Ik, we introduce the sets Il ⊂ {1, . . . , n}l (k − 1 ≥ l ≥ 1) inductively

by
Il−1 := Tl(Il), k ≥ l ≥ 2.

Obviously, I1 = {1, . . . , n}, and this insures that αI1,i = 1 (1 ≤ i ≤ n). From (1.9), we
have that αIl,i ≥ 1 (k − 1 ≥ l ≥ 1, 1 ≤ i ≤ n). It is evident that

α1,i(j) =

{
1, if j = i
0, if j 6= i

, 1 ≤ i ≤ n.

For any k ≥ l ≥ 2 and for any (j1, . . . , jl−1) ∈ Il−1 let

HIl (j1, . . . , jl−1)

:= {((i1, . . . , il),m) ∈ Il × {1, . . . , l} | Sl,m(i1, . . . , il) = (j1, . . . , jl−1)} .

Using these sets we define the functions tIk,l : Il → N (k ≥ l ≥ 1) inductively by

tIk,k (i1, . . . , ik) := 1, (i1, . . . , ik) ∈ Ik;

tIk,l−1(j1, . . . , jl−1) :=
∑

((i1,...,il),m)∈HIl
(j1,...,jl−1)

tIk,l (i1, . . . , il) .

In the sequel, we also make use of the following hypothesis:
(H5) Let |HIl (j1, . . . , jl−1)| = βl−1 for any (j1, . . . , jl−1) ∈ Il−1 (k ≥ l ≥ 2).
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2 Refinement results

The refinement results of this section involve some special expressions, which we now
describe. Assume (H1)-(H4). We shall use the fact that f ∈ BBF is positive homoge-
neous. For any k ≥ l ≥ 1 let

Al,l = Al,l (Ik,M1, . . . ,Mn, p1, . . . , pn)

:=
∑

(i1,...,il)∈Il

(
l∑

s=1

pis
αIl,is

)
f


l∑

s=1

pis

αIl,is
Mis

l∑
s=1

pis

αIl,is

 (2.1)

=
∑

(i1,...,il)∈Il

f

(
l∑

s=1

pis
αIl,is

Mis

)
,

and associate to each k − 1 ≥ l ≥ 1 the number

Ak,l = Ak,l (Ik,M1, . . . ,Mn, p1, . . . , pn)

:=
1

(k − 1) . . . l

∑
(i1,...,il)∈Il

tIk,l (i1, . . . , il)

(
l∑

s=1

pis
αIk,is

)
f


l∑

s=1

pis

αIk,is
Mis

l∑
s=1

pis

αIk,is



=
1

(k − 1) . . . l

∑
(i1,...,il)∈Il

tIk,l (i1, . . . , il) f

(
l∑

s=1

pis
αIk,is

Mis

)
.

Under the above constructions we come to

Theorem 2.1. Assume that (H1)-(H4) are satisfied. Then
(a)

f

(
n∑
r=1

prMr

)
≥ Ak,k ≥ Ak,k−1 ≥ . . . ≥ Ak,2 ≥ Ak,1 =

n∑
r=1

prf(Mr). (2.2)

(b) Assume (H5) is also satisfied. Then

Ak,l = Al,l =
n

l |Il|
∑

(i1,...,il)∈Il

f

(
l∑

s=1

pisMis

)
, (k ≥ l ≥ 1) ,

and thus

f

(
n∑
r=1

prMr

)
≥ Ak,k ≥ Ak−1,k−1 ≥ . . . ≥ A2,2 ≥ A1,1 =

n∑
r=1

prf(Mr).
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Proof. We prove (a), (b) can be proved similarly. Since f is a Bellman-Bergström-Fan
functional, it is concave. Therefore Theorem 1 in [5] implies that

f

(
1

Pn

n∑
r=1

prMr

)
≥ Āk,k ≥ Āk,k−1 ≥ . . . ≥ Āk,2 ≥ Āk,1 =

1

Pn

n∑
r=1

prf(Mr), (2.3)

where
Āl,l := Al,l

(
Ik,M1, . . . ,Mn,

p1

Pn
, . . . ,

pn
Pn

)
, k ≥ l ≥ 1

and
Āk,l := Ak,l

(
Ik,M1, . . . ,Mn,

p1

Pn
, . . . ,

pn
Pn

)
for k − 1 ≥ l ≥ 1. The result now follows from (2.3), since f is positive homogeneous.

3 Applications

Throughout Examples (1-6) conditions (H2)-(H4) will be assumed. These examples
based on examples in [5].

First, we generalize (1.5).

Example 1. Let

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . , n}k | i1 < . . . < ik

}
, 1 ≤ k ≤ n.

Then αIn,i = 1 (i = 1, . . . , n) ensuring (H1) with k = n. It is easy to check that
Tk(Ik) = Ik−1 (k = 2, . . . , n), |Ik| =

(
n
k

)
(k = 1, . . . , n), and for every k = 2, . . . , n

|HIk(j1, . . . , jk−1)| = n− (k − 1), (j1, . . . , jk−1) ∈ Ik−1,

and therefore, by Theorem 2.1 (b),

Ak,k =
1(
n−1
k−1

) ∑
1≤i1<...<ik≤n

f

(
k∑
s=1

pisMis

)
, k = 1, . . . , n.

and

f

(
n∑
r=1

prMr

)
≥ Ak,k ≥ Ak−1,k−1 ≥ . . . ≥ A2,2 ≥ A1,1 =

n∑
r=1

prf(Mr). (3.1)

If p1 = . . . = pn = 1
n
, then (see (2.1))

Ak,k =
1(
n
k

) ∑
1≤i1<...<ik≤n

f

(
Mi1 + . . .+Mik

k

)
, k = 1, . . . , n,

and thus (3.1) gives the generalization of (1.5).
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The structure of the second example is similar to the previous one.

Example 2. Let

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . , n}k | i1 ≤ . . . ≤ ik

}
, k ≥ 1.

Obviously, αIk,i ≥ 1 (i = 1, . . . , n), and therefore (H1) is satisfied. It is not hard to see
that Tk(Ik) = Ik−1 (k = 2, . . .), |Ik| =

(
n+k−1

k

)
(k = 1, . . .), and for each l = 2, . . . , k

|HIl(j1, . . . , jl−1)| = n, (j1, . . . , jl−1) ∈ Il−1.

Consequently, by applying Theorem 2.1 (b), we deduce that

Ak,k =
1(

n+k−1
k−1

) ∑
1≤i1≤...≤ik≤n

f

(
k∑
s=1

pisMis

)
, k ≥ 1,

and

f

(
n∑
r=1

prMr

)
≥ . . . ≥ Ak,k ≥ . . . ≥ Ak,1 =

n∑
r=1

prf(Mr).

By taking p1 = . . . = pn = 1
n

we obtain (see (2.1))

Ak,k =
1(

n+k−1
k

) ∑
1≤i1≤...≤ik≤n

f

(
Mi1 + . . .+Mik

k

)
, k ≥ 1.

The following two examples are particular cases of Theorem 2.1 (b).

Example 3. Let
Ik := {1, . . . , n}k , k ≥ 1.

Trivially, αIk,i ≥ 1 (i = 1, . . . , n), hence (H1) holds. It is evident that Tk(Ik) = Ik−1

(k = 2, . . .), |Ik| = nk (k = 1, . . .), and for every l = 2, . . . , k

|HIl(j1, . . . , jl−1)| = nl, (j1, . . . , jl−1) ∈ Il−1,

and so Theorem 2.1 (b) leads to

Ak,k =
1

knk−1

∑
(i1,...,ik)∈Ik

f

(
k∑
s=1

pisMis

)
, k ≥ 1,

and

f

(
n∑
r=1

prMr

)
≥ . . . ≥ Ak,k ≥ . . . ≥ A1,1 =

n∑
r=1

prf(Mr), k ≥ 1.

Especially, for p1 = . . . = pn = 1
n

we find (see (2.1)) that

Ak,k =
1

nk

∑
(i1,...,ik)∈Ik

f

(
Mi1 + . . .+Mik

k

)
, k = 1, . . . , n.
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Example 4. For 1 ≤ k ≤ n let Ik consist of all sequences (i1, . . . , ik) of k distinct
numbers from {1, . . . , n}. Then αIn,i ≥ 1 (i = 1, . . . , n), hence (H1) is valid. It is
immediate that Tk(Ik) = Ik−1 (k = 2, . . . , n), |Ik| = n(n−1) . . . (n−k+1) (k = 1, . . . , n),
and for each k = 2, . . . , n

|HIk(j1, . . . , jk−1)| = (n− (k − 1)) k, (j1, . . . , jk−1) ∈ Ik−1,

and from them, on account of Theorem 2.1 (b), follows

Ak,k =
n

kn(n− 1) . . . (n− k + 1)

∑
(i1,...,ik)∈Ik

f

(
k∑
s=1

pisMis

)
, k = 1, . . . , n

and

f

(
n∑
r=1

prMr

)
≥ An,n ≥ . . . ≥ Ak,k ≥ . . . ≥ A1,1 =

n∑
r=1

prf(Mr).

If we set p1 = . . . = pn = 1
n
, then by (2.1)

Ak,k =
1

n(n− 1) . . . (n− k + 1)

∑
(i1,...,ik)∈Ik

f

(
Mi1 + . . .+Mik

k

)
, k = 1, . . . , n.

Next two interesting corollaries of Theorem 2.1 (a) are given.

Example 5. Let ci ≥ 1 be an integer (i = 1, . . . , n), let k :=
n∑
i=1

ci, and let Ik = P c1,...,cn

consist of all sequences (i1, . . . , ik) in which the number of occurrences of i ∈ {1, . . . , n}
is ci (i = 1, . . . , n). Evidently, (H1) is satisfied. A simple calculation shows that

Ik−1 =
n⋃
i=1

P c1,...,ci−1,ci−1,ci+1,...,cn , αIk,i =
k!

c1! . . . cn!
ci, i = 1, . . . , n,

and

tIk,k−1 (i1, . . . , ik−1) = k,

if (i1, . . . , ik−1) ∈ P c1,...,ci−1,ci−1,ci+1,...,cn , i = 1, . . . , n.

According to Theorem 2.1 (a)

f

(
n∑
r=1

prMr

)
= Ak,k

=
c1! . . . cn!

k!

∑
(i1,...,ik)∈Ik

f

(
k∑
s=1

pis
cis
Mis

)
≥ Ak,k−1

=
1

k − 1

n∑
i=1

cif

(
n∑
r=1

prMr −
pi
ci
Mi

)
≥

n∑
r=1

prf(Mr).
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Example 6. Let
I2 :=

{
(i1, i2) ∈ {1, . . . , n}2 | i1|i2

}
.

The notation i1|i2 means that i1 divides i2. Since i|i (i = 1, . . . , n), (H1) holds. In this
case

αI2,i =
[n
i

]
+ d(i), i = 1, . . . , n,

where
[
n
i

]
is the largest natural number that does not exceed n

i
, and d(i) denotes the

number of positive divisors of i. By Theorem 2.1 (a), we have

f

(
n∑
r=1

prMr

)
≥

=
∑

(i1,i2)∈I2

f

 pi1[
n
i1

]
+ d(i1)

Mi1 +
pi2[

n
i2

]
+ d(i2)

Mi2

 ≥
n∑
r=1

prf(Mr).

4 Generalizations

In this section, we give the generalization of some refinements given in Section 2. Here
we consider the notations developed in [1].
Let X be a set. The power set of X is denoted by P (X). |X| means the number of
elements in X. For every nonnegative integer m, let

Pm(X) := {Y ⊂ X | |Y | = m} .

We need to introduce two further hypotheses:
(H6) Let S1, . . . , Sn be finite, pairwise disjoint and nonempty sets, let

S :=
n⋃
j=1

Sj,

and let c be a function from S into R such that

c(s) > 0, s ∈ S, and
∑
s∈Sj

c(s) = 1, j = 1, . . . , n.

Let the function τ : S → {1, . . . , n} be defined by

τ(s) := j, if s ∈ Sj.

(H7) Suppose A ⊂ P (S) is a partition of S into pairwise disjoint and nonempty
sets. Let

k := max {|A| | A ∈ A} ,

and let
Al := {A ∈ A | |A| = l} , l = 1, . . . , k.
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We note that Al (l = 1, . . . , k−1) may be the empty set, and of course, |S| =
k∑
l=1

l |Al|.

The empty sum of numbers or vectors is taken to be zero whereas empty product is
taken to be one.

By virtue of the above considerations we give another refinement of the first in-
equality in (1.1).

Theorem 4.1. If (H2-H4) and (H6-H7) are satisfied, then

f

(
n∑
j=1

pjMj

)
≥ Nk ≥ Nk−1 ≥ . . . ≥ N2 ≥ N1 =

n∑
j=1

pjf(Mj),

where

Nk :=
k∑
l=1

∑
A∈Al

(∑
s∈A

c(s)pτ(s)

)
f


∑
s∈A

c(s)pτ(s)Mτ(s)∑
s∈A

c(s)pτ(s)

 (4.1)

=
k∑
l=1

(∑
A∈Al

(
f

(∑
s∈A

c(s)pτ(s)Mτ(s)

)))
,

and for every 1 ≤ m ≤ k − 1 the number Nk−m is given by

Nk−m :=
m∑
l=1

(∑
A∈Al

(∑
s∈A

c(s)pτ(s)f(Mτ(s))

))
+

k∑
l=m+1

(
m!

(l − 1) . . . (l −m)

·
∑
A∈Al

 ∑
B∈Pl−m(A)

(∑
s∈B

c(s)pτ(s)

)
f


∑
s∈B

c(s)pτ(s)Mτ(s)∑
s∈B

c(s)pτ(s)


=

m∑
l=1

(∑
A∈Al

(∑
s∈A

c(s)pτ(s)f(Mτ(s))

))
+

k∑
l=m+1

(
m!

(l − 1) . . . (l −m)

·
∑
A∈Al

 ∑
B∈Pl−m(A)

(
f

(∑
s∈B

c(s)pτ(s)Mτ(s)

)) .

Proof. We can prove as in Theorem 2.1, by applying Theorem 1 in [1].

5 Discussion and applications

The first application of Theorem 4.1 leads to a generalization of Theorem 2.1.

Theorem 5.1. Assume (H1)-(H4) are satisfied. For j = 1, . . . , n, we introduce the sets

Sj := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} .
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Let c be a positive function on S :=
n⋃
j=1

Sj such that

∑
((i1,...,ik),l)∈Sj

c ((i1, . . . , ik) , l) = 1, j = 1, . . . , n.

Then we have

f

(
n∑
j=1

pjMj

)
≥ Nk ≥ Nk−1 ≥ . . . ≥ N2 ≥ N1 =

n∑
j=1

pjf(Mj), (5.1)

where the numbers Nk−m (0 ≤ m ≤ k − 1) can be written in the following forms:

Nk =
∑

(i1,...,ik)∈Ik

(
f

(
k∑
l=1

c ((i1, . . . , ik) , l) pilMil

))
,

and for every 1 ≤ m ≤ k − 1

Nk−m :=
m!

(k − 1) . . . (k −m)

∑
(i1,...,ik)∈Ik

 ∑
1≤l1<...<lk−m≤k(

f

(
k−m∑
l=1

c ((i1, . . . , ik) , lj) piljMilj

)))
.

An immediate consequence of the previous result is Theorem 2.1: by choosing

c ((i1, . . . , ik) , l) :=
1

|Sj|
=

1

αIk,j
if ((i1, . . . , ik) , l) ∈ Sj,

we can see that the inequality (5.1) corresponds to the inequality (2.2).
By applying Theorem 5.1 to either the set

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . , n}k | i1 < . . . < ik

}
, 1 ≤ k ≤ n,

or the set
Ik :=

{
(i1, . . . , ik) ∈ {1, . . . , n}k | i1 ≤ . . . ≤ ik

}
, 1 ≤ k,

generalizations of Example 1 and Example 2 are obtained. Therefore Theorem 4.1 also
provides the generalizations of the corresponding results given in [6].

Now we apply Theorem 4.1 to some special situations based on examples in [1].

Example 7. Let n, m, r be fixed integers, where n ≥ 3, m ≥ 2 and 1 ≤ r ≤ n− 2. In
this example, for every i = 1, 2, . . . , n and for every l = 0, 1, . . . , r the integer i+ l will
be identified with the uniquely determined integer j from {1, . . . , n} for which

l + i ≡ j (modn). (5.2)
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Introducing the notation

D := {1, . . . , n} × {0, . . . , r} ,

let for every j ∈ {1, . . . , n}

Sj := {(i, l) ∈ D | i+ l ≡ j (modn)}
⋃
{j} ,

and let A ⊂ P (S) (S :=
n⋃
j=1

Sj) contain the following sets:

Ai := {(i, l) ∈ D | l = 0, . . . , r} , i = 1, . . . , n

and
A := {1, . . . , n} .

Let c be a positive function on S such that∑
(i,l)∈Sj

c (i, l) + c (j) = 1, j = 1, . . . , n.

A careful verification shows that the sets S1, . . . , Sn, the partition A and the func-
tion c defined above satisfy the conditions (H6) and (H7),

τ (i, l) = i+ l, (i, l) ∈ D,

(by the agreement (see (5.2)), i+ l is identified with j)

τ (j) = j, j = 1, . . . , n,

|Sj| = r + 2, j = 1, . . . , n,

and
|Ai| = r + 1, i = 1, . . . , n, |A| = n.

Now we suppose that (H2)-(H4) are satisfied. Then by Theorem 4.1, we have

f

(
n∑
j=1

pjMj

)
≥ Nn =

n∑
i=1

(
f

(
r∑
l=0

c (i, l) pi+lMi+l

))
(5.3)

+f

(
n∑
j=1

c(j)pjMj

)
≥

n∑
j=1

pjf(Mj).

In case
pj :=

1

n
, j = 1, . . . , n,

c (i, l) :=
1

m (r + 1)
, (i, l) ∈ D, c(j) :=

m− 1

m
j = 1, . . . , n,
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it follows from (5.3) and (4.1) that

f

(
1

n

n∑
j=1

Mj

)
≥ 1

mn

n∑
i=1

f

(
Mi +Mi+1 + . . .+Mi+r

r + 1

)

+
m− 1

m
f

(
1

n

n∑
j=1

Mj

)
≥ 1

n

n∑
j=1

f(Mj).

Example 8. Let n and k be fixed positive integers. Let

D := {(i1, . . . , in) ∈ {1, . . . , k}n | i1 + . . .+ in = n+ k − 1} ,

and for each j = 1, . . . , n, denote Sj the set

Sj := D × {j} .

For every (i1, . . . , in) ∈ D designate by A(i1,...,in) the set

A(i1,...,in) := {((i1, . . . , in) , l) | l = 1, . . . , n} .

It is obvious that Sj (j = 1, . . . , n) and A(i1,...,in) ((i1, . . . , in) ∈ D) are decompositions

of S :=
n⋃
j=1

Sj into pairwise disjoint and nonempty sets, respectively. Let c be a function

on S such that
c ((i1, . . . , in) , j) > 0, ((i1, . . . , in) , j) ∈ S

and ∑
(i1,...,in)∈D

c ((i1, . . . , in) , j) = 1, j = 1, . . . , n. (5.4)

In summary we have that the conditions (H6) and (H7) are valid, and

τ ((i1, . . . , in) , j) = j, ((i1, . . . , in) , j) ∈ S.

Now we suppose that (H2)-(H4) are satisfied. Then by Theorem 4.1, we have

f

(
n∑
j=1

pjMj

)
≥ Nn =

∑
(i1,...,in)∈D

f

(
n∑
l=1

c ((i1, . . . , in) , l) plMl

)

≥
n∑
j=1

pjf(Mj). (5.5)

If we set
pj :=

1

n
, j = 1, . . . , n,

and
c ((i1, . . . , in) , j) :=

ij(
n+k−1
k−1

) ,
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then (5.4) holds, since by some combinatorial considerations

|D| =
(
n+ k − 2

n− 1

)
,

and ∑
(i1,...,in)∈D

ij =
n+ k − 1

n

(
n+ k − 2

n− 1

)
=

(
n+ k − 1

k − 1

)
, j = 1, . . . , n.

In this situation (5.5) can therefore be expressed thus

f

(
1

n

n∑
j=1

Mj

)
≥ 1(

n+k−2
k−1

) ∑
(i1,...,in)∈D

f

(
1

n+ k − 1

n∑
l=1

ilMl

)
≥ 1

n

n∑
j=1

f(Mj).

6 Parameter dependent refinements

Now, we give parameter dependent refinements for determinantal inequalities of
Jensen’s type. We use the constructions introduced by L. Horváth in [2].

Theorem 6.1. Let λ ≥ 1 be a real number. Suppose (H2)-(H4) are satisfied, consider
the sets

Sk :=

{
(i1, . . . , in) ∈ Nn |

n∑
j=1

ij = k

}
, k ∈ N,

and for k ∈ N define the numbers

Ck(λ) = Ck(M1, . . . ,Mn; p1, . . . , pn;λ)

:=
1

(n+ λ− 1)k

∑
(i1,...,in)∈Sk

k!

i1! . . . in!

(
n∑
j=1

λijpj

)
f


n∑
j=1

λijpjMj

n∑
j=1

λijpj


=

1

(n+ λ− 1)k

∑
(i1,...,in)∈Sk

k!

i1! . . . in!
f

(
n∑
j=1

λijpjMj

)
.

Then

f

(
n∑
j=1

pjMj

)
= C0(λ) ≥ C1(λ) ≥ . . . ≥ Ck(λ) ≥ . . . ≥

n∑
j=1

pjf(Mj), k ∈ N.

Proof. It is similar to the proof of Theorem 2.1, by applying Theorem 1 in [2].
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