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Abstract. Let (M, τ) be a finite von Neumann algebra, A be a tracial subalgebra of
M. We prove that A has Lp,q-factorization if and only if A is a subdiagonal algebra.
We also obtain some characterizations of subdiagonal algebras.

1 Introduction

First, we recall the definition of the classical Lorentz spaces. Given a measure space
(X,Σ, ν), 0 < p, q ≤ ∞ and a measurable function f on (X,Σ, ν), define

‖f‖Lp,q(X) =


(∫∞

0
(t

1
pf ∗(t))q dt

t

) 1
q
, q <∞,

supt>0 t
1
pf ∗(t), q = ∞,

where f ∗(t) is the non-increasing rearrangement of f . The classical Lorentz space
Lp,q(X) is the set all measurable functions f on (X,Σ, ν) with ‖f‖Lp,q(X) < ∞. We
refer to [5, 8, 9, 10] for more information about Lp,q(X).

In [3, 4], among other things, Blecher and Labuschagne proved that a tracial sub-
algebra A has L∞-factorization if and only if A is a subdiagonal algebra and Bekjan
[2] obtained that if a tracial subalgebra has Lp-factorization (0 < p <∞), then it is a
subdiagonal algebra.

In this paper we will consider the Lp,q-factorization property of a tracial subalgebra.
The organization of this paper is as follows. Section 2 contains some preliminaries and
notation on tracial subalgebra and noncommutative Lorentz spaces. In Section 3, we
prove that a tracial subalgebra A has Lp,q-factorization if and only if A is a subdiagonal
algebra.

2 Preliminaries

We use standard notation and notions from theory of noncommutative Lp spaces. Our
main references are [7, 12, 13] (see [13] for more historical references). Let M be a
finite von Neumann algebra on a Hilbert space H with a normal finite faithful trace τ
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and denote the lattice of (orthogonal) projections in M by P(M). A closed densely
defined linear operator x in H with domain D(x) is said to be affiliated with M if
and only if u∗xu = x for all unitary operators u which belong to the commutant M′

of M. If x is affiliated with M, then x is said to be τ -measurable if for every ε > 0
there exists a projection e ∈ P (M) such that e(H) ⊆ D(x) and τ(e⊥) < ε (where
for any projection e we let e⊥ = 1− e). The set of all τ -measurable operators will be
denoted by L0(M; τ) or just by L0(M). The set L0(M) is a ∗-algebra with the sum
and product to be the respective closure of the algebraic sum and product.

The measure topology tτ in L0(M) is given by the system

V (ε, δ) = {x ∈ L0(M) : ‖xe‖∞ ≤ δ for some e ∈ P (M) with τ(e⊥) ≤ ε},

ε > 0, δ > 0, of neighborhoods of zero. Note that if one replaces the condition ‖xe‖∞ ≤
δ above by the generally weaker condition ‖exe‖∞ ≤ δ, then the corresponding family
of neighborhoods of zero generates the same topology tτ (see [6]).

The trace τ can be extended to the positive cone L+
0 (M) of L0(M) :

τ(x) =

∫ ∞

0

λdτ(eλ(x)),

where x =
∫∞

0
λdeλ(x) is the spectral decomposition of x.

Given 0 < p <∞, we define

‖x‖p = τ(|x|p)1/p, x ∈M,

where |x| = (x∗x)
1
2 . Then (M, ‖ · ‖p) is a normed (or quasi-normed for p < 1) space,

whose completion is the noncommutative Lp-space associated with (M, τ), satisfying
all the expected properties such as duality (see [13]), denoted by Lp(M, τ) or just by
Lp(M). As usual, we set L∞(M, τ) = M and denote by ‖ · ‖∞(= ‖ · ‖) the usual
operator norm.

Let x be a τ -measurable operator and t > 0. The “ t-th singular number (or
generalized s-number)” of x µt(x) is defined by

µt(x) = inf{‖xe‖ : e ∈ P (M), τ(e⊥) ≤ t}.

It is clear that, if x is a τ -measurable operator, then µt(x) < ∞ for every t > 0. See
[7] for more information about generalized s-numbers.

Definition 1. Let x be a τ -measurable operator affiliated with a finite von Neumann
algebra M, and 0 < p, q ≤ ∞. Define

‖x‖Lp,q(M) =


(∫∞

0
(t

1
pµt(x))

q dt
t

) 1
q
, q <∞,

supt>0 t
1
pµt(x), q = ∞.

The set of all x ∈ L0(M) with ‖x‖Lp,q(M) < ∞ is denoted by Lp,q(M) and is called
the noncommutative Lorentz space with indices p and q.
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It is easy to check that (Lp,q(M), ‖ · ‖Lp,q(M)) is a quasi-Banach space. Moreover,
if p > 1, q ≥ 1, and equipped with the equivalent norm

‖x‖∗Lp,q(M) =


(∫∞

0

[
t−1+ 1

p
∫ t

0
µs(x)ds

]q
dt
t

) 1
q

, q <∞,

supt>0 t
−1+ 1

p
∫ t

0
µs(x)ds, q = ∞,

then (Lp,q(M), ‖ · ‖∗
Lp,q(M)

) is a Banach space (see [14]).

Remark 1. (i) If p = q, then Lp,p(M) = Lp(M).

(ii) If 1 < p <∞, 1 ≤ q <∞ and 1
p
+ 1

p′
= 1, 1

q
+ 1

q′
= 1. Then by Lemma 4.1 of [15],

we obtain the following result

(Lp,q(M))∗ = Lp
′,q′(M).

For a subset K of Lp,q(M), put J(K) = {x∗ : x ∈ K}, K−1 = {x : x, x−1 ∈ K},
K+ = {x : x ≥ 0, x ∈ K}, and [K]p,q the closed linear span of K in Lp,q(M).(Here
[K]∞ is the weak* closure of K ).

Given a von Neumann subalgebra N of M, an expectation E : M→N is defined
to be a positive linear map which preserves the identity and satisfies E(xy) = xE(y)
for all x ∈ N and y ∈ M. Since E is positive it is hermitian, i.e. E(x)∗ = E(x∗) for
all x ∈ M. Hence E(yx) = E(y)x for all x ∈ N and y ∈ M. In order to get a more
profound study of E we reference the readers to [1, 11].

Definition 2. Let A be a weak∗ closed unital subalgebra of M. If there is a linear
projection E from A onto D = A ∩ J(A) such that

(i) E is multiplicative on A, i.e. E(ab) = E(a)E(b) for all a, b ∈ A;

(ii) τ ◦ E = τ ,

then A is called a tracial subalgebra of M.

Definition 3. Let A be a weak∗ closed unital subalgebra of M and let E be a normal
faithful conditional expectation from M onto a von Neumann subalgebra D of M. A
is called a subdiagonal algebra of M with respect to E if the following conditions are
satisfied

(i) A+ J(A) is weak∗ dense in M;

(ii) E(ab) = E(a)E(b) for all a, b ∈ A;

(iii) D = A ∩ J(A).

Let A0 = A ∩ ker(E). We call A τ -maximal, if

A = {x ∈M : τ(xy) = 0, ∀y ∈ A0}.
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3 Lp,q-factorization property of tracial subalgebra

We know that E can be extended to a contract projection from Lp(A) onto Lp(D) for
every 1 ≤ p ≤ ∞ (see [11]). Here we give the general results of contractivity of E from
Lp,q(M) onto Lp,q(D) for 1 ≤ p <∞ and 1 ≤ q <∞.

Lemma 3.1. Let 1 ≤ p <∞ and 1 ≤ q <∞. Then

‖E(x)‖Lp,q(M) ≤ ‖x‖Lp,q(M) , ∀x ∈ Lp,q(M).

Proof. From Proposition 3.9 of [11], we know that E(x) is submajorized by x, for all
x ∈ L1(M). Then ∫ s

0

µt(E(x))dt ≤
∫ s

0

µt(x)dt ∀s ∈ (0, τ(1)).

Hence
‖E(x)‖Lp,q(M) ≤ ‖x‖Lp,q(M), ∀x ∈ Lp,q(M).

Let A be a tracial subalgebra of M. We write Ap,q for [A]p,q ∩M.

Lemma 3.2. Let 1 < p <∞ and 1 ≤ q <∞. If A is a tracial subalgebra of M, then
Ap,q is a tracial subalgebra of M.

Proof. First, we prove that Ap,q is weak∗ closed in M. Indeed, suppose that there is
x ∈ M in the weak∗ closure of [A]p,q but not in [A]p,q. Then by (ii) of Remark 1,
we could find z ∈ Lp

′,q′(M) ⊂ L1(M) such that τ(zx) 6= 0 and τ(zy) = 0 for every
y ∈ [A]p,q, where 1

p
+ 1

p′
= 1, 1

q
+ 1

q′
= 1. Since x is in the weak∗ closure of [A]p,q,

τ(zx) = 0. This contradiction shows that x ∈ Ap,q.
It is clear thatAp,q is unital. To see that Ap,q is a subalgebra, we first check that if

x ∈ A, y ∈ Ap,q, then xy ∈ Ap,q. Indeed, if (yn) ⊂ A with yn → y in Lp,q(M), then
xyn ∈ A and xyn → xy in Lp,q(M). If x ∈ Ap,q, y ∈ Ap,q, then there is (xn) ⊂ A such
that xn → x in Lp,q(M). Hence xny → xy in Lp,q(M), so xy ∈ Ap,q, since xny ∈ Ap,q.

Next we prove that

E(xy) = E(x)E(x), ∀x, y ∈ Ap,q.

Let y ∈ Ap,q, then there is a sequence (yn) ⊂ A such that yn → y in Lp,q(M). So for
all x ∈ A we have xyn ∈ A, and xyn → xy in Lp,q(M). Thus, by Lemma 3.1,

E(xy) = lim
n→∞

E(xyn) = lim
n→∞

E(x)E(yn) = E(x)E(y).

Hence, by what we just proved,

E(yx) = lim
n→∞

E(ynx) = lim
n→∞

E(yn)E(x) = E(y)E(x), ∀x ∈ Ap,q.
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Definition 4. Let 0 < p < ∞, 0 < q < ∞. Let A be a tracial subalgebra of M. We
say that A has Lp,q-factorization, if for x ∈ Lp,q(M)−1, there is a unitary u ∈ M and
a ∈ [A]−1

p,q such that x = ua.

Proposition 3.1. Let A be a tracial subalgebra of M. Let 1 < p1 ≤ p < ∞, 1 ≤
q, s <∞. If A has Lp,q-factorization, then A has Lp1,s-factorization.

Proof. Let x ∈M−1 ⊂ (Lp,q(M))−1. Then there exist a unitary u ∈M and a ∈ [A]−1
p,q

such that x = ua, since A has Lp,q-factorization. So a ∈ A−1
p,q, and therefore Ap,q

has L∞-factorization. By Theorem 1.1 of [4], Ap,q is a subdiagonal algebra of M.
Let x ∈ Lp1,q(M)−1. By Theorem 3.3 of [14], there exist a unitary u ∈ M and
a ∈ [Ap,q]

−1
p1,q

such that x = ua. On the other hand, by Lemma 2.4 of [14], we have
Lp,q(M) ⊂ Lp1,s(M). Hence

[A]p1,s ⊂ [Ap,q]p1,s ⊂ [[A]p,q]p1,s = [A]p1,s.

Thus a ∈ [A]−1
p1,s

, and so A has Lp1,s-factorization.

Theorem 3.1. Let A be a tracial subalgebra of M. Then the following conditions are
equivalent.

(i) A is a subdiagonal subalgebra of M.

(ii) For all 0 < p <∞, 0 < q <∞, A has Lp,q-factorization.

(iii) For some 1 < p <∞, 1 ≤ q <∞, A has Lp,q-factorization.

Proof. (i) ⇒ (ii) follows by Theorem 3.3 of [14].
(ii) ⇒ (iii) is clear.
(iii) ⇒ (i). Since Lp(M) = Lp,p(M), by Proposition 3.1, we get that A has

Lp-factorization. Then by Theorem 2.4 of [2] A is a subdiagonal algebra of M.

Theorem 3.2. Let A be a τ -maximal tracial subalgebra of M. Then the following
conditions are equivalent.

(i) A is a subdiagonal algebra of M.

(ii) For some 0 < p ≤ 1, 0 < q < ∞, A has Lp,q-factorization and Ap,q is a tracial
subalgebra of M.

Proof. We only need to prove (ii) ⇒ (i). By the proof of Proposition 3.1, we know
that Ap,q is a subdiagonal algebra of M and A ⊂ Ap,q. If y ∈ Ap,q, then τ(xy) =
τ(E(xy)) = τ(E(x)E(y)) = 0 for each x ∈ A0. By the τ -maximality of A we know that
y ∈ A. Thus A = Ap,q.

Definition 5. We say a tracial subalgebra A of M satisfies L2-density, if A+ J(A) is
dense in L2(M) in the usual Hilbert space norm on that space.

For more detailed information about L2-density, see [2, 4].

Theorem 3.3. Let A be a tracial subalgebra of M satisfy L2-density. Then the fol-
lowing conditions are equivalent.
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(i) A is a subdiagonal algebra of M.

(ii) For some 0 < p ≤ 1, 0 < q < ∞, A has Lp,q-factorization and Ap,q is a tracial
subalgebra of M.

Proof. (ii) ⇒ (i). It is clear that Ap,q is a subdiagonal algebra of M. Then

L2(M) = [Ap,q]2 ⊕ [J((Ap,q)0)]2.

By [13],

L2(M) = [A]2 ⊕ [J(A0)]2, [A]2 ⊂ [Ap,q]2, [J(A0)]2 ⊂ [J((Ap,q)0)]2.

So we have [A]2 = [Ap,q]2, [J(A0)]2 = [J((Ap,q)0)]2. Since Ap,q is a subdiagonal algebra
of M, for x ∈ L2(M)−1 there exist a unitary u ∈ M and a ∈ [Ap,q]

−1
2 = [A]−1

2 such
that x = ua . This implies A has L2-factorization. By Theorem 2.4 of [2] we know
that A is a subdiagonal algebra of M.
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