EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 6, Number 3 (2015), 6 – 12

CHARACTERIZATION OF SUBDIAGONAL ALGEBRAS ON NONCOMMUTATIVE LORENTZ SPACES

T.N. Bekjan, A. Kairat

Communicated by J.A. Tussupov

Key words: noncommutative Lorentz space; tracial subalgebra, subdiagonal algebra.

AMS Mathematics Subject Classification: 46L51, 46L52.

Abstract. Let (\mathcal{M}, τ) be a finite von Neumann algebra, \mathcal{A} be a tracial subalgebra of \mathcal{M} . We prove that \mathcal{A} has $L^{p,q}$ -factorization if and only if \mathcal{A} is a subdiagonal algebra. We also obtain some characterizations of subdiagonal algebras.

1 Introduction

First, we recall the definition of the classical Lorentz spaces. Given a measure space (X, Σ, ν) , $0 < p, q \le \infty$ and a measurable function f on (X, Σ, ν) , define

$$||f||_{L^{p,q}(X)} = \begin{cases} \left(\int_0^\infty (t^{\frac{1}{p}} f^*(t))^q \frac{dt}{t} \right)^{\frac{1}{q}}, & q < \infty, \\ \sup_{t>0} t^{\frac{1}{p}} f^*(t), & q = \infty, \end{cases}$$

where $f^*(t)$ is the non-increasing rearrangement of f. The classical Lorentz space $L^{p,q}(X)$ is the set all measurable functions f on (X, Σ, ν) with $||f||_{L^{p,q}(X)} < \infty$. We refer to [5, 8, 9, 10] for more information about $L^{p,q}(X)$.

In [3, 4], among other things, Blecher and Labuschagne proved that a tracial subalgebra \mathcal{A} has L^{∞} -factorization if and only if \mathcal{A} is a subdiagonal algebra and Bekjan [2] obtained that if a tracial subalgebra has L^p -factorization (0 < p < ∞), then it is a subdiagonal algebra.

In this paper we will consider the $L^{p,q}$ -factorization property of a tracial subalgebra. The organization of this paper is as follows. Section 2 contains some preliminaries and notation on tracial subalgebra and noncommutative Lorentz spaces. In Section 3, we prove that a tracial subalgebra \mathcal{A} has $L^{p,q}$ -factorization if and only if \mathcal{A} is a subdiagonal algebra.

2 Preliminaries

We use standard notation and notions from theory of noncommutative L_p spaces. Our main references are [7, 12, 13] (see [13] for more historical references). Let \mathcal{M} be a finite von Neumann algebra on a Hilbert space \mathcal{H} with a normal finite faithful trace τ

and denote the lattice of (orthogonal) projections in \mathcal{M} by $P(\mathcal{M})$. A closed densely defined linear operator x in \mathcal{H} with domain D(x) is said to be affiliated with \mathcal{M} if and only if $u^*xu = x$ for all unitary operators u which belong to the commutant \mathcal{M}' of \mathcal{M} . If x is affiliated with \mathcal{M} , then x is said to be τ -measurable if for every $\varepsilon > 0$ there exists a projection $e \in P(\mathcal{M})$ such that $e(H) \subseteq D(x)$ and $\tau(e^{\perp}) < \varepsilon$ (where for any projection e we let $e^{\perp} = 1 - e$). The set of all τ -measurable operators will be denoted by $L_0(\mathcal{M};\tau)$ or just by $L_0(\mathcal{M})$. The set $L_0(\mathcal{M})$ is a *-algebra with the sum and product to be the respective closure of the algebraic sum and product.

The measure topology t_{τ} in $L_0(\mathcal{M})$ is given by the system

$$V(\varepsilon, \delta) = \{x \in L_0(\mathcal{M}) : ||xe||_{\infty} \le \delta \text{ for some } e \in P(\mathcal{M}) \text{ with } \tau(e^{\perp}) \le \varepsilon\},$$

 $\varepsilon > 0, \delta > 0$, of neighborhoods of zero. Note that if one replaces the condition $||xe||_{\infty} \le \delta$ above by the generally weaker condition $||exe||_{\infty} \le \delta$, then the corresponding family of neighborhoods of zero generates the same topology t_{τ} (see [6]).

The trace τ can be extended to the positive cone $L_0^+(\mathcal{M})$ of $L_0(\mathcal{M})$:

$$\tau(x) = \int_0^\infty \lambda d\tau(e_\lambda(x)),$$

where $x = \int_0^\infty \lambda de_\lambda(x)$ is the spectral decomposition of x. Given 0 , we define

$$||x||_p = \tau(|x|^p)^{1/p}, \quad x \in \mathcal{M},$$

where $|x| = (x^*x)^{\frac{1}{2}}$. Then $(\mathcal{M}, \|\cdot\|_p)$ is a normed (or quasi-normed for p < 1) space, whose completion is the noncommutative L^p -space associated with (\mathcal{M}, τ) , satisfying all the expected properties such as duality (see [13]), denoted by $L^p(\mathcal{M}, \tau)$ or just by $L^p(\mathcal{M})$. As usual, we set $L^{\infty}(\mathcal{M}, \tau) = \mathcal{M}$ and denote by $\|\cdot\|_{\infty} (= \|\cdot\|)$ the usual operator norm.

Let x be a τ -measurable operator and t > 0. The "t-th singular number (or generalized s-number)" of $x \mu_t(x)$ is defined by

$$\mu_t(x) = \inf\{ ||xe|| : e \in P(\mathcal{M}), \tau(e^{\perp}) \le t \}.$$

It is clear that, if x is a τ -measurable operator, then $\mu_t(x) < \infty$ for every t > 0. See [7] for more information about generalized s-numbers.

Definition 1. Let x be a τ -measurable operator affiliated with a finite von Neumann algebra \mathcal{M} , and $0 < p, q \leq \infty$. Define

$$||x||_{L^{p,q}(\mathcal{M})} = \begin{cases} \left(\int_0^\infty (t^{\frac{1}{p}} \mu_t(x))^q \frac{dt}{t} \right)^{\frac{1}{q}}, & q < \infty, \\ \sup_{t>0} t^{\frac{1}{p}} \mu_t(x), & q = \infty. \end{cases}$$

The set of all $x \in L_0(\mathcal{M})$ with $||x||_{L^{p,q}(\mathcal{M})} < \infty$ is denoted by $L^{p,q}(\mathcal{M})$ and is called the noncommutative Lorentz space with indices p and q.

It is easy to check that $(L^{p,q}(\mathcal{M}), \|\cdot\|_{L^{p,q}(\mathcal{M})})$ is a quasi-Banach space. Moreover, if p > 1, $q \ge 1$, and equipped with the equivalent norm

$$||x||_{L^{p,q}(\mathcal{M})}^* = \begin{cases} \left(\int_0^\infty \left[t^{-1 + \frac{1}{p}} \int_0^t \mu_s(x) ds \right]^q \frac{dt}{t} \right)^{\frac{1}{q}}, & q < \infty, \\ \sup_{t>0} t^{-1 + \frac{1}{p}} \int_0^t \mu_s(x) ds, & q = \infty, \end{cases}$$

then $(L^{p,q}(\mathcal{M}), \|\cdot\|_{L^{p,q}(\mathcal{M})}^*)$ is a Banach space (see [14]).

Remark 1. (i) If p = q, then $L^{p,p}(\mathcal{M}) = L^p(\mathcal{M})$.

(ii) If $1 , <math>1 \le q < \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$. Then by Lemma 4.1 of [15], we obtain the following result

$$(L^{p,q}(\mathcal{M}))^* = L^{p',q'}(\mathcal{M}).$$

For a subset K of $L^{p,q}(\mathcal{M})$, put $J(K) = \{x^* : x \in K\}$, $K^{-1} = \{x : x, x^{-1} \in K\}$, $K^+ = \{x : x \geq 0, x \in K\}$, and $[K]_{p,q}$ the closed linear span of K in $L^{p,q}(\mathcal{M})$.(Here $[K]_{\infty}$ is the weak* closure of K).

Given a von Neumann subalgebra \mathcal{N} of \mathcal{M} , an expectation $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ is defined to be a positive linear map which preserves the identity and satisfies $\mathcal{E}(xy) = x\mathcal{E}(y)$ for all $x \in \mathcal{N}$ and $y \in \mathcal{M}$. Since \mathcal{E} is positive it is hermitian, i.e. $\mathcal{E}(x)^* = \mathcal{E}(x^*)$ for all $x \in \mathcal{M}$. Hence $\mathcal{E}(yx) = \mathcal{E}(y)x$ for all $x \in \mathcal{N}$ and $y \in \mathcal{M}$. In order to get a more profound study of \mathcal{E} we reference the readers to [1, 11].

Definition 2. Let \mathcal{A} be a $weak^*$ closed unital subalgebra of \mathcal{M} . If there is a linear projection \mathcal{E} from \mathcal{A} onto $\mathcal{D} = \mathcal{A} \cap J(\mathcal{A})$ such that

- (i) \mathcal{E} is multiplicative on \mathcal{A} , i.e. $\mathcal{E}(ab) = \mathcal{E}(a)\mathcal{E}(b)$ for all $a, b \in \mathcal{A}$;
- (ii) $\tau \circ \mathcal{E} = \tau$,

then \mathcal{A} is called a tracial subalgebra of \mathcal{M} .

Definition 3. Let \mathcal{A} be a $weak^*$ closed unital subalgebra of \mathcal{M} and let \mathcal{E} be a normal faithful conditional expectation from \mathcal{M} onto a von Neumann subalgebra \mathcal{D} of \mathcal{M} . \mathcal{A} is called a subdiagonal algebra of \mathcal{M} with respect to \mathcal{E} if the following conditions are satisfied

- (i) A + J(A) is $weak^*$ dense in \mathcal{M} ;
- (ii) $\mathcal{E}(ab) = \mathcal{E}(a)\mathcal{E}(b)$ for all $a, b \in \mathcal{A}$;
- (iii) $\mathcal{D} = \mathcal{A} \cap J(\mathcal{A}).$

Let $\mathcal{A}_0 = \mathcal{A} \cap \ker(\mathcal{E})$. We call \mathcal{A} τ -maximal, if

$$\mathcal{A} = \{ x \in \mathcal{M} : \tau(xy) = 0, \ \forall y \in \mathcal{A}_0 \}.$$

3 $L^{p,q}$ -factorization property of tracial subalgebra

We know that \mathcal{E} can be extended to a contract projection from $L^p(\mathcal{A})$ onto $L^p(\mathcal{D})$ for every $1 \leq p \leq \infty$ (see [11]). Here we give the general results of contractivity of \mathcal{E} from $L^{p,q}(\mathcal{M})$ onto $L^{p,q}(\mathcal{D})$ for $1 \leq p < \infty$ and $1 \leq q < \infty$.

Lemma 3.1. Let $1 \le p < \infty$ and $1 \le q < \infty$. Then

$$\|\mathcal{E}(x)\|_{L^{p,q}(\mathcal{M})} \le \|x\|_{L^{p,q}(\mathcal{M})}, \ \forall x \in L^{p,q}(\mathcal{M}).$$

Proof. From Proposition 3.9 of [11], we know that $\mathcal{E}(x)$ is submajorized by x, for all $x \in L^1(\mathcal{M})$. Then

$$\int_0^s \mu_t(\mathcal{E}(x))dt \le \int_0^s \mu_t(x)dt \ \forall s \in (0, \tau(1)).$$

Hence

$$\|\mathcal{E}(x)\|_{L^{p,q}(\mathcal{M})} \le \|x\|_{L^{p,q}(\mathcal{M})}, \quad \forall x \in L^{p,q}(\mathcal{M}).$$

Let \mathcal{A} be a tracial subalgebra of \mathcal{M} . We write $\mathcal{A}_{p,q}$ for $[\mathcal{A}]_{p,q} \cap \mathcal{M}$.

Lemma 3.2. Let $1 and <math>1 \le q < \infty$. If \mathcal{A} is a tracial subalgebra of \mathcal{M} , then $\mathcal{A}_{p,q}$ is a tracial subalgebra of \mathcal{M} .

Proof. First, we prove that $\mathcal{A}_{p,q}$ is weak* closed in \mathcal{M} . Indeed, suppose that there is $x \in \mathcal{M}$ in the $weak^*$ closure of $[\mathcal{A}]_{p,q}$ but not in $[\mathcal{A}]_{p,q}$. Then by (ii) of Remark 1, we could find $z \in L^{p',q'}(\mathcal{M}) \subset L^1(\mathcal{M})$ such that $\tau(zx) \neq 0$ and $\tau(zy) = 0$ for every $y \in [\mathcal{A}]_{p,q}$, where $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$. Since x is in the $weak^*$ closure of $[\mathcal{A}]_{p,q}$, $\tau(zx) = 0$. This contradiction shows that $x \in \mathcal{A}_{p,q}$.

It is clear that $\mathcal{A}_{p,q}$ is unital. To see that $\mathcal{A}_{p,q}$ is a subalgebra, we first check that if $x \in \mathcal{A}, y \in \mathcal{A}_{p,q}$, then $xy \in \mathcal{A}_{p,q}$. Indeed, if $(y_n) \subset \mathcal{A}$ with $y_n \to y$ in $L^{p,q}(\mathcal{M})$, then $xy_n \in \mathcal{A}$ and $xy_n \to xy$ in $L^{p,q}(\mathcal{M})$. If $x \in \mathcal{A}_{p,q}$, $y \in \mathcal{A}_{p,q}$, then there is $(x_n) \subset \mathcal{A}$ such that $x_n \to x$ in $L^{p,q}(\mathcal{M})$. Hence $x_ny \to xy$ in $L^{p,q}(\mathcal{M})$, so $xy \in \mathcal{A}_{p,q}$, since $x_ny \in \mathcal{A}_{p,q}$. Next we prove that

$$\mathcal{E}(xy) = \mathcal{E}(x)\mathcal{E}(x), \quad \forall x, y \in \mathcal{A}_{p,q}.$$

Let $y \in \mathcal{A}_{p,q}$, then there is a sequence $(y_n) \subset \mathcal{A}$ such that $y_n \to y$ in $L^{p,q}(\mathcal{M})$. So for all $x \in \mathcal{A}$ we have $xy_n \in \mathcal{A}$, and $xy_n \to xy$ in $L^{p,q}(\mathcal{M})$. Thus, by Lemma 3.1,

$$\mathcal{E}(xy) = \lim_{n \to \infty} \mathcal{E}(xy_n) = \lim_{n \to \infty} \mathcal{E}(x)\mathcal{E}(y_n) = \mathcal{E}(x)\mathcal{E}(y).$$

Hence, by what we just proved,

$$\mathcal{E}(yx) = \lim_{n \to \infty} \mathcal{E}(y_n x) = \lim_{n \to \infty} \mathcal{E}(y_n) \mathcal{E}(x) = \mathcal{E}(y) \mathcal{E}(x), \ \forall x \in \mathcal{A}_{p,q}.$$

Definition 4. Let $0 , <math>0 < q < \infty$. Let \mathcal{A} be a tracial subalgebra of \mathcal{M} . We say that \mathcal{A} has $L^{p,q}$ -factorization, if for $x \in L^{p,q}(\mathcal{M})^{-1}$, there is a unitary $u \in \mathcal{M}$ and $a \in [\mathcal{A}]_{p,q}^{-1}$ such that x = ua.

Proposition 3.1. Let A be a tracial subalgebra of M. Let $1 < p_1 \le p < \infty$, $1 \le q, s < \infty$. If A has $L^{p,q}$ -factorization, then A has $L^{p_1,s}$ -factorization.

Proof. Let $x \in \mathcal{M}^{-1} \subset (L^{p,q}(\mathcal{M}))^{-1}$. Then there exist a unitary $u \in \mathcal{M}$ and $a \in [\mathcal{A}]_{p,q}^{-1}$ such that x = ua, since \mathcal{A} has $L^{p,q}$ -factorization. So $a \in \mathcal{A}_{p,q}^{-1}$, and therefore $\mathcal{A}_{p,q}$ has L^{∞} -factorization. By Theorem 1.1 of [4], $\mathcal{A}_{p,q}$ is a subdiagonal algebra of \mathcal{M} . Let $x \in L^{p_1,q}(\mathcal{M})^{-1}$. By Theorem 3.3 of [14], there exist a unitary $u \in \mathcal{M}$ and $a \in [\mathcal{A}_{p,q}]_{p_1,q}^{-1}$ such that x = ua. On the other hand, by Lemma 2.4 of [14], we have $L^{p,q}(\mathcal{M}) \subset L^{p_1,s}(\mathcal{M})$. Hence

$$[\mathcal{A}]_{p_1,s} \subset [\mathcal{A}_{p,q}]_{p_1,s} \subset [[\mathcal{A}]_{p,q}]_{p_1,s} = [\mathcal{A}]_{p_1,s}.$$

Thus $a \in [\mathcal{A}]_{p_1,s}^{-1}$, and so \mathcal{A} has $L^{p_1,s}$ -factorization.

Theorem 3.1. Let A be a tracial subalgebra of M. Then the following conditions are equivalent.

- (i) A is a subdiagonal subalgebra of M.
- (ii) For all $0 , <math>0 < q < \infty$, A has $L^{p,q}$ -factorization.
- (iii) For some $1 , <math>1 \le q < \infty$, A has $L^{p,q}$ -factorization.

Proof. $(i) \Rightarrow (ii)$ follows by Theorem 3.3 of [14].

- $(ii) \Rightarrow (iii)$ is clear.
- $(iii) \Rightarrow (i)$. Since $L^p(\mathcal{M}) = L^{p,p}(\mathcal{M})$, by Proposition 3.1, we get that \mathcal{A} has L^p -factorization. Then by Theorem 2.4 of [2] \mathcal{A} is a subdiagonal algebra of \mathcal{M} .

Theorem 3.2. Let A be a τ -maximal tracial subalgebra of \mathcal{M} . Then the following conditions are equivalent.

- (i) A is a subdiagonal algebra of M.
- (ii) For some $0 , <math>0 < q < \infty$, \mathcal{A} has $L^{p,q}$ -factorization and $\mathcal{A}_{p,q}$ is a tracial subalgebra of \mathcal{M} .

Proof. We only need to prove $(ii) \Rightarrow (i)$. By the proof of Proposition 3.1, we know that $\mathcal{A}_{p,q}$ is a subdiagonal algebra of \mathcal{M} and $\mathcal{A} \subset \mathcal{A}_{p,q}$. If $y \in \mathcal{A}_{p,q}$, then $\tau(xy) = \tau(\mathcal{E}(xy)) = \tau(\mathcal{E}(x)\mathcal{E}(y)) = 0$ for each $x \in \mathcal{A}_0$. By the τ -maximality of \mathcal{A} we know that $y \in \mathcal{A}$. Thus $\mathcal{A} = \mathcal{A}_{p,q}$.

Definition 5. We say a tracial subalgebra \mathcal{A} of \mathcal{M} satisfies L^2 -density, if $\mathcal{A} + J(\mathcal{A})$ is dense in $L^2(\mathcal{M})$ in the usual Hilbert space norm on that space.

For more detailed information about L^2 -density, see [2, 4].

Theorem 3.3. Let \mathcal{A} be a tracial subalgebra of \mathcal{M} satisfy L^2 -density. Then the following conditions are equivalent.

- (i) A is a subdiagonal algebra of M.
- (ii) For some $0 , <math>0 < q < \infty$, \mathcal{A} has $L^{p,q}$ -factorization and $\mathcal{A}_{p,q}$ is a tracial subalgebra of \mathcal{M} .

Proof. $(ii) \Rightarrow (i)$. It is clear that $\mathcal{A}_{p,q}$ is a subdiagonal algebra of \mathcal{M} . Then

$$L^2(\mathcal{M}) = [\mathcal{A}_{p,q}]_2 \oplus [J((\mathcal{A}_{p,q})_0)]_2.$$

By [13],

$$L^{2}(\mathcal{M}) = [\mathcal{A}]_{2} \oplus [J(\mathcal{A}_{0})]_{2}, \ [\mathcal{A}]_{2} \subset [\mathcal{A}_{p,q}]_{2}, \ [J(\mathcal{A}_{0})]_{2} \subset [J((\mathcal{A}_{p,q})_{0})]_{2}.$$

So we have $[\mathcal{A}]_2 = [\mathcal{A}_{p,q}]_2$, $[J(\mathcal{A}_0)]_2 = [J((\mathcal{A}_{p,q})_0)]_2$. Since $\mathcal{A}_{p,q}$ is a subdiagonal algebra of \mathcal{M} , for $x \in L^2(\mathcal{M})^{-1}$ there exist a unitary $u \in \mathcal{M}$ and $a \in [\mathcal{A}_{p,q}]_2^{-1} = [\mathcal{A}]_2^{-1}$ such that x = ua. This implies \mathcal{A} has L^2 -factorization. By Theorem 2.4 of [2] we know that \mathcal{A} is a subdiagonal algebra of \mathcal{M} .

Acknowledgments

The authors were partially supported by project 3606/GF4 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.

References

- [1] W.B. Arveson, Analyticity in operator algebras, Amer J. Math. 89 (1967), 578-642.
- [2] T.N. Bekjan, Characterization of subdiagonal algebras, Proc. Amer. Math. Soc. 139 (2011), 1121-1126.
- [3] D.P. Blecher, L.E. Labuschagne, Applications of the Fuglede-Kadison determinant: Szegö's theorem and outers for noncommutative H^p, Trans. Am. Math. Soc. 2008 (360), 6131-6147.
- [4] D. P. Blecher, L.E. Labuschagne, Characterizations of noncommutative H^{∞} , Integr. Equ. Oper. Theory 56(2006), 301-321.
- [5] M. Cwikel, Y. Sagher, $(L(p,\infty))^*$, Indiana Univ. Math. J. 21 (1972), 781-786.
- [6] V. Chilin , S. Litvinov, A. Skalski, A fewremarks in non-commutative ergodic theory, J. Operator Theory 53 (2005), 331-350.
- [7] T. Fack, H. Kosaki, Generalized s-numbers of τ-measure operators, Pac. J. Math. 123 (1986), 269-300.
- [8] L. Grafakos, Classical and modern Fourier analysis, London: Pearson Education, 2004.
- [9] R.A. Hunt, On L(p,q) spaces, L' Enseignement Math. 12 (1966), 249-276.
- [10] Y. Han, T.N. Bekjan, The dual of noncommutative Lorentz spaces, Acta. Math. Sci. 31 (2011), 2067-2080.
- [11] M. Marsalli, G. West, Noncommutative H^p-spaces, J. Operator Theory 40 (1997), 339-355.
- [12] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116.
- [13] G. Pisier, Q. Xu, *Noncommutative* L_p -spaces, Handbook of the geometry of Banach spaces, Vol 2. Amsterdam: North-Holland, 2003, 1459-1517.
- [14] J. Shao, Y. Han, Szegö type factorization theorem for noncommutative Hardy-Lorentz spaces, Acta Math. Sci. 33(6) (2013), 1675-1684.
- [15] Q. Xu, Interpolation of operator spaces, J. Funct. Anal. 139 (1996), 500-539.

Turdebek N. Bekjan, Ainur Kairat Faculty of Mechanics and Mathematics L.N. Gumilyov Eurasian National University 13 Kazhymukan St, 010008 Astana, Kazakhstan E-mails: bek@xju.edu.cn, ainur 010192@mail.ru

Received: 08.03.2015.