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Abstract. Let (M, 7) be a finite von Neumann algebra, 4 be a tracial subalgebra of
M. We prove that A has LP9-factorization if and only if A is a subdiagonal algebra.
We also obtain some characterizations of subdiagonal algebras.

1 Introduction

First, we recall the definition of the classical Lorentz spaces. Given a measure space
(X,%,v), 0 < p,q < oo and a measurable function f on (X, 3, v), define

(FE o). g <o,

£l zracx)y = y
SUP¢>0 tpf*(t), q = o0,

where f*(t) is the non-increasing rearrangement of f. The classical Lorentz space
LP1(X) is the set all measurable functions f on (X,%,v) with ||f|/zrex) < co. We
refer to [5, 8, 9, 10] for more information about LP?(X).

In [3, 4], among other things, Blecher and Labuschagne proved that a tracial sub-
algebra A has L*>-factorization if and only if A is a subdiagonal algebra and Bekjan
[2] obtained that if a tracial subalgebra has LP-factorization (0 < p < 00), then it is a
subdiagonal algebra.

In this paper we will consider the LP-factorization property of a tracial subalgebra.
The organization of this paper is as follows. Section 2 contains some preliminaries and
notation on tracial subalgebra and noncommutative Lorentz spaces. In Section 3, we
prove that a tracial subalgebra A has LP?-factorization if and only if A is a subdiagonal
algebra.

2 Preliminaries

We use standard notation and notions from theory of noncommutative L, spaces. Our
main references are |7, 12, 13| (see [13] for more historical references). Let M be a
finite von Neumann algebra on a Hilbert space ‘H with a normal finite faithful trace 7
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and denote the lattice of (orthogonal) projections in M by P(M). A closed densely
defined linear operator x in H with domain D(x) is said to be affiliated with M if
and only if u*ru = x for all unitary operators u which belong to the commutant M’
of M. If z is affiliated with M, then x is said to be 7-measurable if for every ¢ > 0
there exists a projection e € P(M) such that e(H) C D(z) and 7(et) < & (where
for any projection e we let et = 1 — e). The set of all T-measurable operators will be
denoted by Lo(M; 7) or just by Ly(M). The set Lo(M) is a *-algebra with the sum
and product to be the respective closure of the algebraic sum and product.
The measure topology t, in Lo(M) is given by the system

V(e,d) = {x € Lo(M) : ||ze||oc <& for some e € P(M) with 7(et) < e},

e >0, > 0, of neighborhoods of zero. Note that if one replaces the condition ||ze||o, <
d above by the generally weaker condition ||exe||o < 4, then the corresponding family
of neighborhoods of zero generates the same topology ¢, (see [6]).

The trace T can be extended to the positive cone L (M) of Ly(M) :

() = /OOO Mr(ex(z),

where z = fooo Adey(x) is the spectral decomposition of z.
Given 0 < p < oo, we define

lzll, = 7(j«[")"?, z e M,

where |z| = (z*z)z. Then (M, || - |p) is a normed (or quasi-normed for p < 1) space,
whose completion is the noncommutative LP-space associated with (M, 7), satisfying
all the expected properties such as duality (see [13]), denoted by LP(M, 1) or just by
LP(M). As usual, we set L®°(M,7) = M and denote by || - ||oo(= || - ||) the usual
operator norm.

Let x be a 7-measurable operator and ¢ > 0. The “ t-th singular number (or
generalized s-number)” of z () is defined by

pi(x) = inf{||ze|| : e € P(M), 7(et) < t}.

It is clear that, if = is a 7-measurable operator, then u,(z) < oo for every ¢t > 0. See
[7] for more information about generalized s-numbers.

Definition 1. Let x be a 7-measurable operator affiliated with a finite von Neumann
algebra M, and 0 < p,q < co. Define

1

1 1
(b qﬂ)", < 00,
2] Lr.acrr) = (fo (Pft@)) 7 g <
SUPyq 17 (), q = 0.

The set of all € Lo(M) with ||| rr.arm) < 00 is denoted by LP4(M) and is called
the noncommutative Lorentz space with indices p and gq.
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It is easy to check that (LP4(M), || - ||Lp,q(M)) is a quasi-Banach space. Moreover,
if p>1, ¢ > 1, and equipped with the equivalent norm

1
PN
. B <f000 [tiH% fot ,us(:zc)ds] %) g < oo,
e limague = S
Supot 7 [y ps(2)ds, q = oo,

then (LP4(M), || - H*L”’q(/\/l)) is a Banach space (see [14]).

Remark 1. (i) If p=gq, then LPP(M) = LP(M).

(ii) Ifl<p<oo,1<g< and%—l—ﬁ = 1,%4—& = 1. Then by Lemma 4.1 of [15],
we obtain the following result

(L9(M) = 1 (M),

For a subset K of LP4(M), put J(K) ={z*: v € K}, K'={z: z,27' € K},
Kt ={z: z >0,z € K}, and [K],, the closed linear span of K in L??(M).(Here
[K]w is the weak™ closure of K ).

Given a von Neumann subalgebra N of M, an expectation £ : M — N is defined
to be a positive linear map which preserves the identity and satisfies £(zy) = z€(y)
for all x € N and y € M. Since £ is positive it is hermitian, i.e. £(z)* = £(z*) for
all z € M. Hence E(yx) = E(y)x for all x € N and y € M. In order to get a more
profound study of £ we reference the readers to [1, 11].

Definition 2. Let A be a weak* closed unital subalgebra of M. If there is a linear
projection £ from A onto D = AN J(A) such that

(i) € is multiplicative on A, i.e. E(ab) = E(a)E(b) for all a,b € A;
(i) ro€=r,
then A is called a tracial subalgebra of M.

Definition 3. Let A be a weak™ closed unital subalgebra of M and let £ be a normal
faithful conditional expectation from M onto a von Neumann subalgebra D of M. A
is called a subdiagonal algebra of M with respect to £ if the following conditions are
satisfied

(i) A+ J(A) is weak* dense in M;
(ii) E(ab) = E(a)E(D) for all a,b € A,
(i) D =ANJ(A).
Let Ay = AnNker(€). We call A 7-maximal, if

A={zxeM:7(zy) =0, Yy € Ao}.
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3 [P9-factorization property of tracial subalgebra

We know that £ can be extended to a contract projection from L”(A) onto LP(D) for
every 1 < p < oo (see [11]). Here we give the general results of contractivity of £ from
LP2(M) onto LP4(D) for 1 < p < oo and 1 < g < oo.

Lemma 3.1. Let 1 <p<ooand 1l < qg<oo. Then
1E(@)||Lramy < |2l Lpamy 5 Vo € LPI(M).

Proof. From Proposition 3.9 of [11|, we know that £(z) is submajorized by z, for all
z € L'(M). Then

/0 u(E())dt < / u(a)de Vs € (0,7(1)).

Hence
||5(:L”)||Lp,q(/\4) < ||$||Lp,q(M), Vi € Lp’q(./\/l).

Let A be a tracial subalgebra of M. We write A, , for [A] N M.

Lemma 3.2. Let 1 <p< oo and 1 < q < oo. If A is a tracial subalgebra of M, then
A, 4 is a tracial subalgebra of M.

Proof. First, we prove that A, , is weak® closed in M. Indeed, suppose that there is
r € M in the weak* closure of [A],, but not in [A],,. Then by (ii) of Remark 1,
we could find z € L7 (M) C L'(M) such that 7(zx) # 0 and 7(zy) = 0 for every
y € [Alpg, where o + 5 = 1,2+ 4 = 1. Since z is in the weak® closure of [Al,,,
7(zx) = 0. This contradiction shows that x € A, ,.

It is clear thatA4, , is unital. To see that A, , is a subalgebra, we first check that if
re A ye A, then vy € A,,. Indeed, if (y,) C A with y, — y in LP?(M), then
ry, € A and vy, — vy in LPI(M). If x € A, 4, y € A, 4, then there is (z,) C A such
that x, — = in LP?(M). Hence z,,y — zy in LP1(M), so xy € A, ,, since x,y € A, ,.

Next we prove that

E(xy) =E(x)E(x), Vx,ye A,,.

Let y € A, 4, then there is a sequence (y,) C A such that y, — y in L»9(M). So for
all z € A we have zy, € A, and zy, — zy in LP?(M). Thus, by Lemma 3.1,

E(xy) = lim E(zy,) = lim E(x)E(yn) = E(x)E(y).
Hence, by what we just proved,

E(yx) = lim E(y,x) = lim E(yn)E(x) = E(y)E(x), Vo € Ay
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Definition 4. Let 0 < p < 00, 0 < ¢ < 0. Let A be a tracial subalgebra of M. We
say that A has LP4-factorization, if for x € LP4(M)~!, there is a unitary u € M and
a € [A];, such that = = ua.

Proposition 3.1. Let A be a tracial subalgebra of M. Let 1 < py < p < o0, 1 <
q,s < oo. If A has LP?-factorization, then A has LP**-factorization.

Proof. Let x € M~! C (LP9(M))~". Then there exist a unitary u € M and a € [A],}
such that 2 = wua, since A has LP?-factorization. So a € A; ., and therefore A,,
has L*>-factorization. By Theorem 1.1 of [4], A,, is a subdiagonal algebra of M.
Let z € LPY9(M)~!. By Theorem 3.3 of [14], there exist a unitary u € M and
a € [Ay 4]t such that # = ua. On the other hand, by Lemma 2.4 of [14], we have

P1,9

LPi(M) C LP+*(M). Hence
[A]p1,s - [Apvq]m,s - [[-A]p,q]m,s = [-’4]191,5-

Thus a € [A];},, and so A has LP"*-factorization. O

p1,8?

Theorem 3.1. Let A be a tracial subalgebra of M. Then the following conditions are
equivalent.

(i) A is a subdiagonal subalgebra of M.
(il) For all0 <p < 00, 0 < q < 00, A has LP-factorization.

(iii) For some 1 <p < oo, 1 < q < o0, A has LP9-factorization.

Proof. (i) = (ii) follows by Theorem 3.3 of [14].

(11) = (4i1) is clear.

(i19) = (i). Since LP(M) = LPP(M), by Proposition 3.1, we get that A has
LP-factorization. Then by Theorem 2.4 of [2| A is a subdiagonal algebra of M. O

Theorem 3.2. Let A be a T-maximal tracial subalgebra of M. Then the following
conditions are equivalent.

(i) A is a subdiagonal algebra of M.

(i) For some 0 <p <1, 0 <q < o0, A has LP?-factorization and A, , is a tracial
subalgebra of M.

Proof. We only need to prove (ii) = (i). By the proof of Proposition 3.1, we know
that A,, is a subdiagonal algebra of M and A C A4,,. lf y € A,,, then 7(zy) =
7(E(zy)) = 7(E(x)E(y)) = 0 for each x € Ay. By the 7-maximality of A we know that
ye A Thus A=A4,,. O

Definition 5. We say a tracial subalgebra A of M satisfies L*-density, if A+ J(A) is
dense in L*(M) in the usual Hilbert space norm on that space.

For more detailed information about L2-density, see |2, 4].

Theorem 3.3. Let A be a tracial subalgebra of M satisfy L*-density. Then the fol-
lowing conditions are equivalent.
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(i) A is a subdiagonal algebra of M.

(i) For some 0 < p <1, 0 < q < oo, A has LP-factorization and A,, is a tracial
subalgebra of M.

Proof. (ii) = (i). Tt is clear that A, is a subdiagonal algebra of M. Then
LAH(M) = [Apg2 @ [J((Apg)o)]e-
By [13],
LAH(M) = [Al2 & [J(Ao)l2, [Al2 C [Apgle, [(Ao)]2 C [T((Apg)o)la-

So we have [A]y = [A, 42, [J(Ao)l2 = [J((Apg)o)]2. Since A, , is a subdiagonal algebra
of M, for z € L*(M)~! there exist a unitary u € M and a € [A4,,];' = [A];' such
that = wa . This implies A has L*-factorization. By Theorem 2.4 of [2] we know
that A is a subdiagonal algebra of M. O
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