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Abstract. In this paper we consider the following modification of the Gamma
operators which were first introduced in [8] (see [17], [18] and [8] respectively)

An(f ; x) =

∫ ∞

0

Kn(x, t)f(t)dt

where

Kn(x, t) =
(2n+ 3)!

n!(n+ 2)!

tnxn+3

(x+ t)2n+4
, x, t ∈ (0, ∞),

and the following modified Gamma-Taylor operators

An,r(f ; x) =

∫ ∞

0

Kn(x, t)

(
r∑
i=0

f (i)(t)

i!
(x− t)i

)
dt.

We establish some approximation properties of these operators. At the end of the
paper we also present some graphs allowing to compare the rate of approximation of
f by An(f ; x) and An,r(f ; x) for certain n, r and x.

1 Introduction

Recently Izgi and Buyukyazici [8] (see [17], [18] and [8] respectively) defined the fol-
lowing operator

An(f ;x) =

∞∫
0

Kn(x, t)f(t)dt. (1.1)

for any f for which the integral is convergent. Here

Kn(x, t) =
(2n+ 3)!

n!(n+ 2)!

xn+3tn

(x+ t)2n+4
, x, t ∈ (0,∞), n = 1, 2, 3, ....
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The rate of convergence of these operators for functions with derivatives of bounded
variation was studied in [13]. In [12] the rate of pointwise convergence of these oper-
ators for functions of bounded variation was studied. In [14] direct local and global
approximation results for these operators were obtained. The author of this paper
studied these operators for Voronovskaya type asymptotic approximation in [10], also
studied these operators for Lp−integrable functions [11] and studied these operators for
bivariate functions in weighted spaces with the following operators [9]

An,m(f(u, v);x, y) =

∞∫
0

∞∫
0

Kn(x, u)Km(y, v)f(u, v)dudv.

In this paper, we consider new operators by combining modified Gamma operators
and Taylor polynomials of r times differentiable functions f in weighted spaces on the
interval (0, bn] which expands to (0, ∞) when n → ∞. We study the convergence of
these new operators. At the end of paper we present some graphs allowing to compare
the rate of approximation of f by An(f ; x) and An,r(f ; x) for certain n, r and x.

Let Cr(0,∞) denote the set of all functions f : (0,∞) → R wich r (r = 0, 1, 2, ...)
order derivatives are continuous, where C0(0,∞) ≡ C(0,∞).

For any f ∈ Cr(0,∞) and arbitrary t ∈ (0,∞) we consider Taylor polynomials of
order r−

Tr(f ; x) =
r∑
i=0

f (i)(t)

i!
(x− t)i. (1.2)

If we combine (1.1) and (1.2) ,we obatin

An,r(f ;x) =

∞∫
0

Kn(x, t)
r∑
i=0

f (i)(t)

i!
(x− t)idt. (1.3)

It is clear that An,0(f ;x) = An(f ;x) (see [16] ).
Note that An(f ;x) is linear positive operator , An,r(f ;x) is linear but not positive

operator for r ≥ 1.
For our aim we use the weighted Korovkin type theorems, proved by A.D. Gadzhiev

[4], [5] and we use the same notation as in [4].
Let ρ(x) = 1 + x2, x ∈ (−∞,∞). Bρ denotes the set of all functions f defined on

the real axis satisfying the condition

|f(x)| ≤Mfρ(x) (1.4)

where Mf is a constant depending only on f .Bρ is a normed space with the norm

‖f‖ρ = sup
x∈(−∞,∞)

|f(x)|
ρ(x)

, f ∈ Bρ.

Cρ denotes the subspace of all continuous functions in Bρ and Ck
ρ denotes the subspace

of all functions f ∈ Cρ for which

lim
|x|→∞

|f(x)|
ρ(x)

= Kf <∞.
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Bρ,(0, an],Cρ,(0, an] and Ck
ρ,(0, an] are defined as Cρ , Bρ and Ck

ρ respectively, only with
the domain (0, an] instead of R and the norm

‖f‖ρ, (0, an] = sup
x∈(0, an]

|f(x)|
ρ(x)

.

In the sequel it will be assumed that lim
n→∞

an = ∞.

2 Auxiliary results

We need the following equalities for An(f ;x) .

Lemma 2.1. ([8]). For any n, p ∈ N, p ≤ n+ 2

An(t
p;x) =

(n+ p)!(n+ 2− p)!

n!(n+ 2)!
xp. (2.1)

In particular

An(1; x) = 1, (2.2)

An(t;x) = x− x

n+ 2
, (2.3)

An(t
2;x) = x2 (2.4)

An(t
3;x) = x3 +

3

n
x3, (2.5)

An(t
4;x) = x4 +

4(2n+ 3)

n(n− 1)
x4, n > 1. (2.6)

Remark 1. Several classical positive linear operators, e.g. the Bernstein, Baskakov
and Szăsz-Mirakyan operators preserve the functions e0(x) = 1, e1(x) = x but do not
preserve e2(x) = x2. It has been shown that the error of approximation of f from
certain function spaces, by operators which preserve e0(x) = 1 and e2(x) = x2, is
smaller than the operators which do not preserve e2(x) = x2, see [2, 15, 19].

Let us define

Tn,s(x) = An((t− x)s;x) and an,p =
(n+ p)!(n+ 2− p)!

n!(n+ 2)!
.

Lemma 2.2.

Tn,s(x) =

(
s∑

k=0

(−1)k
(
s
k

)
(n+ s− k)!(n+ 2− s+ k)!

n!(n+ 2)!

)
xs.
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Proof. Since

Tn,s(x) = An((t− x)s;x) =

∞∫
0

Kn(x, t)(t− x)sdt

=
s∑

k=0

(−1)k
(
s
k

)
xkAn(t

s−k;x),

the proof follows by Lemma 2.1, p replaced by (s− k) .

The following equalities are obtained from Lemma 2.2:

An((t− x)2;x) =
2

n+ 2
x2, (2.7)

An((t− x)4;x) =
12(n+ 4)

(n+ 2)n(n− 1)
x4, n > 1 (2.8)

An((t− x)6;x) =
120(n2 + 23n+ 48)

n(n− 1)(n− 2)(n− 3)(n+ 2)
x6, n > 3. (2.9)

By equalities (2.7)- (2.9) and similar equalities for An((t− x)2s;x) we get

Tn,2s(x) ≤ αs
x2s

ns
, (2.10)

where αs is a constant depending only on s.

Lemma 2.3. For all n and 0 ≤ p ≤ 2,

an,p ≤ 1.

For and p ≥ 3 and n > p2 + p− 3

an,p < e.

Proof. It is easy to see an,p ≤ 1 for 0 ≤ p ≤ 2 and n > p2 + p− 3

an,p =
(n+ p)(n+ p− 1)...(n+ 4)(n+ 3)

n(n− 1)...(n− (p− 4))(n− (p− 3))

=
(
1 +

p

n

) (
1 +

p

n− 1

)
...

(
1 +

p

n− (p− 4)

) (
1 +

p

n− (p− 3)

)
≤

(
1 +

p

n

)p−2

< e.
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Lemma 2.4. For sufficiently large n satisfying the conditions of Lemma 2.3 the fol-
lowing inequalities hold:

(i)

An(|t− x|m ;x) ≤
√
αm

xm

nm/2
,

(ii)

An(|t− x|m tl;x) ≤
√
αm e

xm+l

nm/2
,

(iii)

An(|t− x|m (t− x)j;x) ≤ √
αm αj

xm+j

n(m+j)/2
,

(iv)

An(|t− x|m tl(t− x)j;x) ≤ (α2
m α2je)

1/4 xm+l+j

n(m+j)/2
,

where l,m, j ∈ N.

Proof. (i) and (iii) follow by the using Hölder′s inequality and (2.10). Also by Hölder′s
inequality, (2.10) and Lemma 2.3

An(|t− x|m tl;x) ≤
√
An((t− x)2m;x)

√
An(t2l;x)

≤ √
αman,2l

xm+l

n(m+l)/2
≤
√
αme

xm+l

n(m+l)/2

and

An(|t− x|m tl(t− x)j;x) ≤
√
An((t− x)2m;x)

√
An(t2l;x)(t− x)2j

≤
√
αm

xm

nm/2

√√
An(t4l;x)

√
An((t− x)4j;x)

≤ (αmα2je)
1/4 x

m+l+j

n(m+j)/2
.

3 Approximation of An(f ;x) in weighted spaces

Let (bn) be a sequence with positive terms, bn+1 > bn ,

lim
n→∞

bn = ∞ and lim
n→∞

b2n
n

= 0 . (3.1)

By using (2.2)-(2.4), we have

An(ρ(t);x) = ρ(x).

Therefore, ‖An(f ;x)‖ρ,(0,bn] ≤ ‖f‖ρ,(0,bn] . Hence {An} is a sequence of linear positive
operators taking Cρ(0, bn] into Bρ(0, bn].
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Theorem 3.1. Let f ∈ Ck
ρ (0,∞). Then

lim
n→∞

‖Anf − f‖ρ,(0,bn] = 0.

Proof. By using (2.2)-(2.4), we have

lim
n→∞

‖An(1; x)− 1‖ρ,(0,bn] = 0,

lim
n→∞

‖An(t;x)− x‖ρ,(0,bn] = lim
n→∞

sup
0<x≤bn

1

n+ 3

x

1 + x2
= 0,

lim
n→∞

∥∥An(t2;x)− x2
∥∥
ρ,(0,bn]

= 0.

According to [5, Theorem B], the proof is completed.

4 Rate of approximation of An(f ;x) and An,r(f ;x) in weighted
spaces

Now we want to find the rate of approximation of the sequence of linear positive
operators {An} for f ∈ Ck

ρ (0, bn] and rate of approximation of linear operators {An,r}
for f ∈ Cr(0,∞), f , f (r) ∈ Ck

ρ (0, bn]. It is well known that, the first modulus of
continuity

ω(f ; δ) = sup{|f(t)− f(x)| : t, x ∈ [a, b], |t− x| ≤ δ}

does not tend to zero, as δ → 0, on any infinite interval.
In [6] a weighted modulus of continuity Ωn(f ; δ) was defined, which tends to zero

as δ → 0 on an infinite interval. A similar definition can be found in [1].
For each f ∈ Ck

ρ (0, bn] it is given by

∆n(f ; δ) = sup

{
|f(x+ h)− f(x)|
(1 + x2)(1 + h2)

: |h| ≤ δ, x ∈ (0, bn]

}
. (4.1)

In [6] the following properties of ∆n(f ; δ) were shown:

(i) lim
δ→0

∆n(f ; δ) = 0 for every f ∈ Ck
ρ (0, bn],

(ii) For every f ∈ Ck
ρ (0, bn] and t, x ∈ (0, bn],

|f(t)− f(x)| ≤ 2(1 + δ2
n)(1 + x2)∆n(f ; δn)Sn(t, x),

where Sn(t, x) =
(
1 + |t−x|

δn

)
(1 + (t− x)2) .

It is easy to see that:

Sn(t, x) ≤

 2(1 + δ2
n), if |t− x| ≤ δn,

2(1 + δ2
n)

(t− x)4

δ4
n

, if |t− x| ≥ δn.
(4.2)
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Theorem 4.1. Let f ∈ Ck
ρ (0, bn]. Then for all sufficiently large n

‖Anf − f‖ρ,(0,bn] ≤ 592∆n

(
f ;

√
b2n
n

)
.

Proof. If we use (2.2), then

|An(f ;x)− f(x)| ≤ An(|f(t)− f(x)| ;x)
≤ 2(1 + δ2

n)(1 + x2)∆n(f ; δn).An(Sn(t, x);x)

By (4.2) we get that Sn(t, x) ≤ 2(1 + δ2
n)[1 +

(t− x)4

δ4
n

] for all x ∈ (0, bn], t ∈

(0,∞).Thus, for n ≥ 2 , x ∈ (0, bn], using (2.8), we get

|An(f ;x)− f(x)| ≤ 4(1 + δ2
n)

2(1 + x2)

[
1 +

1

δ4
n

12(n+ 4)

(n+ 2)n(n− 1)
x4

]
∆n(f ; δn)

≤ 4(1 + δ2
n)

2(1 + x2)

[
1 +

36

δ4
n

b4n
n2

]
∆n(f ; δn)

Take here δn =
√

b2n
n
. Since lim

n→∞

b2n
n

= 0, we have that δn ≤ 1 for sufficiently large n,
and the statement of the theorem follows.

Remark 2. Theorems this kind were studied for different operators (for instance, for
the Szasz-Mirakjian and Baskakov operators (see [6], [7]) for the norm ‖·‖ρ3 . But in our
Theorem we use the norm ‖·‖ρ . Thus, Theorem 4.1 gives a better order approximation
compared with analogous theorems which were proved in [6], [7].

Before Theorem 4.2 we need the following formula which is called a modified Taylor
formula. By Taylor’s theorem [20, pages, 391-392] we have

f(x) =
r−1∑
i=0

f (i)(t)

i!
(x− t)i +

x∫
t

f (r)(s)

(r − 1)!
(x− s)r−1ds

=
r−1∑
i=0

f (i)(t)

i!
(x− t)i +

(x− t)r

(r − 1)!

1∫
0

(
x− s

x− t

)r−1

f (r)(s)
ds

x− t

Let s = t+ u(x− t), then

f(x) =
r−1∑
i=0

f (i)(t)

i!
(x− t)i +

(x− t)r

(r − 1)!

1∫
0

(1− u)r−1f (r)(t+ u(x− t))du

=
r−1∑
i=0

f (i)(t)

i!
(x− t)i

+
(x− t)r

(r − 1)!

1∫
0

(1− u)r−1
(
f (r)(t+ u(x− t))− f (r)(t)

)
du. (4.3)
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Theorem 4.2. Let f, f (r) ∈ Ck
ρ (0, bn]. Then

‖An,rf − f‖ρ,(0,bn] ≤Mr

(
b2n
n

)r/2
∆n

(
f (r);

√
b2n
n

)
for all sufficiently large n, where Mr depends only on r (r = 0, 1, 2, ...).

Proof. Using modified Taylor′s formula (4.3) and equalities (2.2) and (1.3), we obtain

|An,r(f ;x)− f(x)| ≤
∞∫

0

Kn(x, t)
|x− t|
(r − 1)!

Φ(r, t)dt

where Φ(r, t) =
1∫
0

(1− u)r−1
∣∣f (r)(t+ u(x− t))− f (r)(t)

∣∣ du
Applying property (ii) of ∆n(f, δ), we get∣∣f (r)(t+ u(x− t))− f (r)(t)

∣∣ ≤ 2(1 + δ2
n)(1 + t2)Sn(x, u, t)Ωn(f

(r), δn),

where x ∈ (0, bn], t ∈ (0,∞), u ∈ [0, 1] and

Sn(x, u, t) =

(
1 +

u

δn
|t− x|

)(
1 + u2(t− x)2

)
.

It is easy to see that

Sn(x, u, t) ≤

 (1 + u)(1 + u2δ2
n), if |t− x| ≤ δn

(1 + u)(1 + u2δ2
n)

(t− x)4

δ4
n

, if |t− x| ≥ δn

So, for all x ∈ (0, bn], t ∈ (0,∞), and u ∈ [0, 1]

Sn(x, u, t) ≤ (1 + u)(1 + u2δ2
n)

[
1 +

(t− x)4

δ4
n

]
.

Thus,

|An,r(f ;x)− f(x)| ≤M(r, δn)∆n(f
(r), δn)× An((1 + t2) |t− x|r

[
1 +

(t− x)4

δ4
n

]
;x)

where M(r, δn) = 2(1 + δ2
n)(

1

r!
+

1

(r + 1)!
+

δ2
n

(r + 2)!
+

δ3
n

(r + 3)!
).

Using Lemma 2.4, we get

|An,r(f ;x)− f(x)| ≤ M(r, δn)∆n(f
(r), δn)×

{
√
αr

xr

nr/2
+
√
αre

xr+2

nr/2

+

√
αrα4

δ4
n

xr+4

n(r+4)/2
+

(α2
rα8e)

1/2

δ4
n

xr+6

n(r+4)/2

}
≤ M(r, δn)∆n(f

(r), δn)(1 + x2)×
{
√
αr

xr

nr/2
+
√
αre

xr

nr/2

+

√
αrα4

δ4
n

xr+4

n(r+4)/2
+

(α2
rα8e)

1/2

δ4
n

xr+4

n(r+4)/2

}
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Thus, we have

sup
0<x≤bn

|An,r(f ;x)− f(x)|
1 + x2

≤M(r, δn)∆n(f
(r), δn)

(
b2n
n

)r/2{
Ar +

Br

δ4
n

(
b2n
n

)2
}
,

where Ar =
√
αr +

√
αre, Br =

√
αrα4 + (α2

rα8e)
1/2. Choosing δn =

√
b2n
n

and taking

into account that
b2n
n
≤ 1 for sufficiently large n, since lim

n→∞

b2n
n

= 0, we obtain

M(r, δn) ≤ 4

(
3∑
i=0

1

(r + i)!

)
:= βr and

‖An,rf − f‖ρ,(0,bn] ≤ βr(Ar +Br)

(
b2n
n

)r/2
∆n

(
f (r),

√
b2n
n

)
.

Hence, the statement of the theorem follows with Mr = βr(Ar +Br).

Example 1.We compare the graphs of An,r(f ;x) and An(f ;x) where
f(x) = x5/2(1 + sin(x/1.07)) for n = 10, r = 1, 2 (Fig. 1) and n = 50, r = 1, 2

(Fig. 2).
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