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Abstract. We formulate the result on existence of a relatively compact perturbation
of the Laplace operator which possesses the Volterra property.

1 Introduction

In a Hilbert space H, we consider a linear operator L with the domain D(L), and with
the range R(L). By the kernel of the operator L we mean the set

KerL =
{
f ∈ D(L) : Lf = 0

}
.

Definition 1.1. An operator L is called a restriction of an operator L1, and L1 is
called an extension of an operator L, briefly L ⊂ L1, if:

1) D(L) ⊂ D(L1),
2) Lf = L1f for all f from D(L).

Definition 1.2. A linear closed operator L0 in a Hilbert space H is called minimal if
R(L0) 6= H and there exists a bounded inverse operator L−1

0 on R(L0).

Definition 1.3. A linear closed operator L̂ in a Hilbert space H is called maximal if
R(L̂) = H and Ker L̂ 6= {0}.

Definition 1.4. A linear closed operator L in a Hilbert space H is called correct if
there exists a bounded inverse operator L−1 defined on all of H.

Definition 1.5. We say that a correct operator L in a Hilbert space H is a correct
extension of minimal operator L0 (correct restriction of maximal operator L̂) if L0 ⊂ L

(L ⊂ L̂).
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Definition 1.6. We say that a correct operator L in a Hilbert space H is a boundary
correct extension of a minimal operator L0 with respect to a maximal operator L̂ if L is
simultaneously a correct restriction of the maximal operator L̂ and a correct extension
of the minimal operator L0, that is, L0 ⊂ L ⊂ L̂.

At the beginning of the 1980s, M. Otelbaev and his disciples proved abstract theo-
rems (see [9, 7]), which allow us to describe all correct extensions of a minimal operator
by using one correct extension in terms of an inverse operator. Similarly, all possible
correct restrictions of a maximal operator were described. For convenience, we present
the conclusions of these theorems.

Let L̂ be a maximal linear operator in a Hilbert space H, L be a correct restriction
of the operator L̂, and K be an arbitrary linear bounded operator in H satisfying the
following condition:

R(K) ⊂ Ker L̂. (1.1)

Then the operator L−1
K defined by the formula

L−1
K f = L−1f +Kf, (1.2)

describes the inverse operators of all possible correct restrictions LK of the maximal
operator L̂.

Let L0 be a minimal operator in a Hilbert space H, L be a correct extension of
the minimal operator L0, and K be a linear bounded operator in H satisfying the
conditions

a) R(L0) ⊂ KerK,
b) Ker (L−1 +K) = {0},

then the operator L−1
K defined by formula (1.2) describes the inverse operators of all

possible correct extensions LK of the minimal operator L0.
Let L be any known boundary correct extension of the minimal operator L0. The

existence of at least one boundary correct extension L was proved by Vishik in [12].
Let K be a linear bounded operator in H satisfying the conditions

a) R(L0) ⊂ KerK,
b) R(K) ⊂ Ker L̂,

then the operator L−1
K defined by formula (1.2) describes the inverse operators of all

possible boundary correct extensions LK of the minimal operator L0.

Definition 1.7. A bounded operator A in a Hilbert space H is called quasinilpotent if
its spectral radius is zero, that is, the spectrum consists of the single point zero.

Definition 1.8. An operator A in a Hilbert space H is called a Volterra operator if A
is compact and quasinilpotent.

Definition 1.9. A correct restriction L of a maximal operator L̂ (L ⊂ L̂), a correct
extension L of a minimal operator L0 (L0 ⊂ L) or a boundary correct extension L of a
minimal operator L0 with respect to a maximal operator L̂ (L0 ⊂ L ⊂ L̂), will be called
Volterra if the inverse operator L−1 is a Volterra operator.
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We denote by S∞(H,H1) the set of all linear compact operators acting from a
Hilbert space H to a Hilbert space H1. If T ∈ S∞(H,H1), then T ∗T is a non-negative
self-adjoint operator in S∞(H) ≡ S∞(H,H) and, moreover, there is a non-negative
unique self-adjoint root |T | = (T ∗T )1/2 in S∞(H). The eigenvalues λn(|T |) numbered,
taking into account their multiplicity, form a monotonically converging to zero sequence
of non-negative numbers. These numbers are usually called s-numbers of the operator
T and denoted by sn(T ), n ∈ N. We denote by Sp(H,H1) the set of all compact
operators T ∈ S∞(H,H1), for which

|T |pp =
∞∑
j=1

spj(T ) <∞, 0 < p <∞.

Obviously, if rank rank |T | = r < ∞, then sn(T ) = 0, for n = r + 1, r + 2, . . . .
Operators of finite rank certainly belong to the classes Sp(H,H1) for all p > 0.

In a recent paper by the author (see [2]) a wide class was described of correct
restrictions and extensions for the Laplace operator, which are not Volterra. It is
noticed that in the one-dimensional case (see [4]) the Volterra property for the case
of Sturm-Liouville equations depends on the behaviour of the lower terms. Then the
following question arises: Can lower terms help to ensure the Volterra property for the
Laplace operator?

The present paper is devoted to the study of this question.
In the Hilbert space L2(Ω), where Ω is a bounded domain in Rm with infinitely

smooth boundary ∂Ω, let us consider the minimal L0 and maximal L̂ operators gener-
ated by the Laplace operator

−∆u = −
(
∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
m

)
. (1.3)

The closure L0 in the space L2(Ω) of the Laplace operator (1.3) with the domain
C∞

0 (Ω) is called the minimal operator corresponding to the Laplace operator.
The operator L̂, adjoint to the minimal operator L0 corresponding to the Laplace

operator is called the maximal operator corresponding to the Laplace operator (see [6]).
Note that

D(L̂) = {u ∈ L2(Ω) : L̂u = −∆u ∈ L2(Ω)}.

Denote by LD the operator, corresponding to the Dirichlet problem with the domain

D(LD) = {u ∈ W 2
2 (Ω) : u|∂Ω = 0}.

Then, by virtue of (1.2), the inverse operators L−1 to all possible correct restric-
tions of the maximal operator L̂, corresponding to the Laplace operator (1.3) have the
following form:

u ≡ L−1f = L−1
D f +Kf, (1.4)

where, by virtue of (1.1), K is an arbitrary linear operator bounded in L2(Ω) with

R(K) ⊂ Ker L̂ = {u ∈ L2(Ω) : −∆u = 0}.
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Then the direct operator L is determined from the following problem:

L̂u ≡ −∆u = f, f ∈ L2(Ω), (1.5)

D(L) = {u ∈ D(L̂) : (I −KL̂)u|∂Ω = 0}, (1.6)

where I is the unit operator in L2(Ω).
The operators (L∗)−1, corresponding to the operators L∗

v ≡ (L∗)−1g = L−1
D g +K∗g, (1.7)

describe the inverses of all possible correct extensions of the minimal operator L0 if
and only if K satisfies the condition (see [3]):

Ker(L−1
D +K∗) = {0}.

Note that the last condition is equivalent to the following: D(L) = L2(Ω). If the
operator K in (1.4), satisfies one more additional condition

KR(L0) = {0},

then the operator L, corresponding to problem (1.5)-(1.6), will turn out to be a bound-
ary correct extension.

Now we state the main result.

2 Main results

A linear operator acting in a separable Hilbert space H is called complete if the system
of its root vectors corresponding to nonzero eigenvalues is complete in H. By a weak
perturbation of a complete compact self-adjoint operator A we mean an operator A(I+
C), where C is a compact operator such that the operator I + C is continuously
invertible.

Let the operator K in (1.4) be compact and positive in L2(Ω). We denote by {µn}∞1
and {λn}∞1 eigenvalues of the operator K and L−1 respectively numbered in descending
order taking into account their multiplicities. We need the following

Lemma 2.1. If the eigenvalues {µn}∞1 of the operator K from the representation (1.4)
satisfy the condition

lim
n→∞

µ2nµ
−1
n = 1, (2.1)

then the eigenvalues {λn}∞1 of the operator L−1 in (1.4) also have the property

lim
n→∞

λ2nλ
−1
n = 1.

In the proof of Lemma 2.1 some results of works [1, p. 16], [11, p. 41] and [5, p. 52]
are applied.

So, the operator L−1, corresponding to problem (1.5)-(1.6), satisfies all assumptions
of Theorem A from the work of Macaev and Mogul’ski which states:
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Theorem А (Macaev, Mogul’ski [8]) Let the eigenvalues {λ̃i}∞1 of a complete positive
compact operator A numbered in descending order taking into account their multiplici-
ties satisfy the condition

lim
n→∞

λ̃2nλ̃
−1
n = 1.

Then there is a weak perturbation of the operator A which is a Volterra operator.

Theorem 2.1. Let the operator K in problem (1.5)-(1.6) be compact and positive
in L2(Ω) and let its eigenvalues {µj}∞1 satisfy the condition (2.1). Then there exists
a compact operator S in L2(Ω) such that the relatively compact perturbation of the
Laplace operator LS defined by{

L̂Su = −∆u+ S(−∆u) = f, f ∈ L2(Ω),

D(LS) = {u ∈ D(L̂) : (I −KL̂)u|∂Ω = 0},
(2.2)

is a correct Volterra boundary problem.

Idea of the proof. By the assumptions of Theorem 2.1 it follows that the direct
operator L determined from problem (1.5)-(1.6) is positive since its inverse operator
L−1 of form (1.4) is a positive and compact operator in L2(Ω).

Using Theorem A we obtain that there is a Volterra weak perturbation L−1
S =

L−1(I +S1) for the operator L−1. By definition the operator S1 is compact and I +S1

is continuously invertible. We denote

(I + S1)
−1 = I + S,

where S is a compact operator in L2(Ω). Then problem (2.2) defines the direct operator
LS. Note that

D(LS) = D(L),

and that LS is a relatively compact perturbation of the Laplace operator L̂. �
If we consider Ker L̂ as an independent Hilbert space, the existence of the operator

K satisfying the conditions of Theorem 2.1 follows from the general theory (see [10]).
For example, the operator K which satisfies the conditions of Theorem 2.1 may

have the eigenvalues µn with the asymptotics

µn ≈ 1/ln(n+ 2), as n→∞.

Note that in this case, the operator K is compact but not in the Schatten classes.
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